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ABSTRACT
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The AdS/CFT correspondence, a groundbreaking theoretical framework in mod-

ern physics, has provided profound insights into the unification of quantum field

theory and gravity. This project delves into the AdS/CFT correspondence and fo-

cuses on its application to the intriguing realm of anti-de Sitter (AdS) black holes.

Anti-de Sitter space, characterized by its negative cosmological constant, serves as

a valuable backdrop for studying the interplay between quantum field theory and

gravity in a highly curved spacetime.

This research project aims to elucidate various properties of AdS black holes

and their connections to conformal field theories (CFTs) in lower dimensions. We

investigate the thermodynamic, holographic, and information-theoretic aspects of

these black holes, aiming to unravel the mysteries that lie at the intersection of

quantum mechanics and gravity.

This project is divided into two parts - first, we will study AdS/CFT correpon-

dence and perform some calculations to prepare our tools and second we will study

properties of anti de sitter black holes and why we do bother about them.
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Chapter 1

Introduction

In the realm of theoretical physics, there exist profound and captivating ideas that

transcend the boundaries of our conventional understanding of the universe. These

ideas not only challenge our fundamental notions of space, time, and matter but

also reveal unexpected connections between disparate facets of the physical world.

Among these remarkable concepts are the AdS/CFT correspondence, holographic

duality, and large N symmetries. Each of these notions, in its own right, has revolu-

tionized our comprehension of the cosmos. Yet, when viewed together, they present

a panoramic view of the universe that defies our intuitions and beckons us to explore

the hidden depths of theoretical physics.

The AdS/CFT correspondence, often referred to as the holographic principle,

stands as a pinnacle of 21st-century theoretical physics. It asserts a remarkable re-

lationship between two seemingly unrelated theories: Anti-de Sitter space (AdS), a

negatively curved spacetime, and conformal field theory (CFT), a quantum field the-

ory living on its boundary. In this duality, a gravitational theory in AdS is equivalent
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1 Introduction

to a quantum field theory on the boundary of that spacetime. This profound insight,

first conjectured by Juan Maldacena in 1997, not only bridges the chasm between

quantum mechanics and gravity but also opens new vistas for understanding black

holes, quantum entanglement, and the very nature of spacetime itself.

Complementing the AdS/CFT correspondence is the concept of holographic du-

ality. This overarching idea, inspired by the AdS/CFT correspondence, extends the

notion of holography to a broader context, suggesting that our three-dimensional

universe might be encoded on a lower-dimensional boundary. Holographic duality

challenges our perception of reality, hinting at the possibility that the entirety of our

universe’s physics can be represented on its cosmic horizon.

Further enriching this tapestry of ideas is the gauge-gravity correspondence,

which explores the connection between gauge theories—such as quantum chromo-

dynamics (QCD)—and gravity. This correspondence reveals that certain strongly

coupled gauge theories can be described by gravitational theories in higher dimen-

sions. This revolutionary insight has implications not only for understanding the

strong force in particle physics but also for elucidating the behavior of quark-gluon

plasmas, shedding light on the early moments of our universe.

My project embarks on a captivating journey into the interconnected worlds of the

AdS/CFT correspondence, holographic duality, and gauge-gravity correspondence.

We will delve into the historical developments, mathematical foundations, and mul-

tifaceted applications of these ideas, striving to unravel the mysteries they hold and

the profound implications they bear for our understanding of the cosmos.

In November 1997 Maldacena wrote his groundbreaking paper, conjecturing the

relation which became known as the AdS/CFT correspondence. In this report we will

3



1.1 Hints For Holography

explain how Maldacena arrived at this remarkable conjecture, indicate its formulation

and key features, and mention its immediate sociological impact. Since the statement

is perhaps as mystifying as it is profound, I give a more modern perspective which

motivates the correspondence with a course on string theory. I then build up the

basics of the AdS/CFT dictionary which simultaneously exemplify some of the initial

checks of its , the latter focusing on the important context of AdS black holes. I

refer to the excellent early review by ‘MAGOO’ .

1.1 Hints For Holography

“The carrer of a young theoretical physicist consists of treating the harmonic oscil-

lator in ever-increasing levels of abstraction.” - Sidney Coleman

In this chapter,we will get a favor of the holographic duality. We first study

gravity system and derive blackhole thermodynamics where holography principle

emerges. Then we investigate gauge theory in the large N (t’Hooft)limit. At last, we

compare such a theory and the string theory and give hints on holographic duality.

Anti de sitter space generalises to any number of space dimensions. In higher

dimensions, it is best known for its role AdS/CFT correspondence, which suggests

that it is possible to describe a force in quantum mechanics (like electromagnetism,

the weak force or strong force) in a certain number of dimensions with a string theory

where the strings exist in an anti de sitter space with one additional (non - compact)

dimension.
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1.1.1 Prelude

1.1.1 Prelude

The basic theoretical structure of interactions is well understood by path integral

formalism plus Wilsonian Renormalization Group. Then any calculation can be

reduced to this algorithm, although it does not mean we can necessarily perform it.

On the other hand, gravity is quite different. From theory of general gravity (GR):

Classical Gravity = Space-time (no concept of spacetime fabric, simply GR)

However, how do we understand quantum gravity? Spacetime here should be-

come dynamical. There are many puzzling questions. Is spacetime fundamental or

emergent? Is it continuous or discrete? What is the quantum nature of blackholes?

How did the universe begin? One intriguing feature about gravity is that it is the

weakest interaction, which may be a fundamental aspect. In 1997, Juan Maldacena

discovered the famous duality:
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1.1.2 Emergence of Gravity

1.1.2 Emergence of Gravity

From field theory perspective, it is natural to ask whether massless spin-2 particles

(gravitons) can arise as bound states in a theory of massless spin-1 (photons,gluons)

and spin-1/2 particles (protons,electrons). If the answer is yes, we can conclude that

gravity can be emergent. For example, in Quantum Chromodyanmics(QCD),there

are indeed massive spin-2 excitations. Could one tweak such a theory that mass-less

spin-2 particles emerge?Such hopes were however dashed by a powerful theorem of

Weinberg and Witten.

Theorem 1.1.1. A theory that allows the construction of a Lorentz-covariant con-

served 4-vector current Jµ cannot contain mass-less particles of spin > 1/2 with

non-vanishing values of the conceived charge
∫
J0d3x

Theorem 1.1.2. A theory that allows a conserved Lorentz-covariant stress tensor

T µνcannot contain mass-less particles of spin > 1.

Proof. Suppose we have such a theory that allows Lorentz covariant conserved cur-

rent and stress tensor, and there exist massless particles of spin-J. One-particle state

are denoted as |k, σ⟩, kµ = (k0,k), σ = ±j (helicity). We have

R̂(θ, k̂) |k, σ⟩ = eiσθ |k, σ⟩ (1.1)

Where R̂(θ, k̂) is the rotational operator by an angle θ around k̂ = k
|k| . The conserved

Lorentz covariant current is Jµ, with the conserved charge

Q̂ =

∫
J0d3x (1.2)
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1.1.2 Emergence of Gravity

and the Lorentz covariant stress tensor is T µν , with the conserved momentum

P̂ =

∫
T 0µd3x (1.3)

Then,

P̂ µ |k, σ⟩ = kµ |k, σ⟩ (1.4)

If |k, σ⟩ is charged under the symmetry generated by Jµ with charge q:

Q̂ |k, σ⟩ = q |k, σ⟩ (1.5)

We want to show that:

1. if q ̸= 0, j ≤ 1
2

2. j ≤ 1, for Lorentz covariant conserved T µν

First we claim that Lorentz invariance implies:

⟨k, σ| Jµ |k′, σ⟩ k→k′−−−→ qkµ

k0

1

(2π)3
(1.6)

⟨k, σ|T µν |k′, σ⟩ k→k′−−−→ kµkν

k0

1

(2π)3
(1.7)

where ⟨k, σ | k′, σ′⟩ = δσσ′δ(3)(k− k′) . When looking at 0th component of eqn(1.6),

we have ⟨k, σ |J0| k′, σ⟩ k→k′−−−→ q
(2π)3

.

For massless particle k2 = k′2 = 0. This implies that kµk′
µ < 0, i.e. k + k′ is

timelike. We can choose a frame , such that k + k′ = 0 and kµ = (E, 0, 0, E) and

k′µ = (E, 0, 0,−E). In this frame a rotation by θ around z axis has the effect :

7



1.1.2 Emergence of Gravity

R̂(θ) |k, j⟩ = eijθ |k, j⟩ , R̂(θ) |k′, j⟩ = e−ijθ |k′, j⟩ (1.8)

⟨k′, j
∣∣∣R̂−1(θ)JµR̂(θ)

∣∣∣ k, j⟩ = e2ijθ⟨k′, j |Jµ| k, j⟩ (1.9)

⇒ e2ijθ⟨k′, j |Jµ| k, j⟩ = Λµ
ν (θ)⟨k′, j |Jν | k, j⟩ (1.10)

here in eqn(1.8) minus sign occurs because k′ has the opposite orientation as that

of k so helicity should also changes sign. Λµ
ν is defined by the rotation acting on a

4-vector by an angle θ around z-axis. Similarly,

e2ijθ⟨k′, j |T µν | k, j⟩ = Λµ
ρ(θ)Λ

ν
λ(θ)⟨k′, j

∣∣T ρλ
∣∣ k, j⟩ (1.11)

Thus ⟨k′, j
∣∣∣R̂−1(θ)JµR̂(θ)

∣∣∣ k, j⟩ can only be nonzero if j ≤ 1/2 . Otherwise eqn(1.6)

is contradicted because Λµ
ν (θ) has the eigen values e±iθ, 1. ⟨k′, j |T µν | k, j⟩ can only

be nonzero if j ≤ 1. Otherwise eqn(1.7) is contradicted. Thus we proved both the

theorems.

Weinberg-Witten Theorem forbids the existence of massless spin-2 particles, which

is a hall mark of gravity, in the same space time a QFT lives. But there is a loophole:

emergent gravity can live in a different spacetime, as in holographic duality.

Remarks:

1. Blackhole thermodynamics ⇒ holographic principle.

2. Large N gauge theories ⇒ gauge/string duality.
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1.2 Black Holes

1.2 Black Holes

Let us first compare the strength of gravity and strength of electro-magnetic (EM)

interaction. In the EM case, interaction takes the form VEM = e2/r. We take the

reduced Compton wavelength rc =
ℏ
mc

to be the smallest distance between particles,

because this distance can be thought as the fundamental limitation on measuring the

positions of a particle, taking quantum mechanics and special relativity into account.

Using the unit of particle static mass, the EM interaction has the effective strength:

λEM =
VEM(rC)

mc2
=

e2

ℏc
= α =

1

137
(1.12)

On the other hand, we can also get the effective strength of gravity:

λG =
VG(rc)

mc2
=

GNm
2

ℏ/mc

1

mc2
=

m2

m2
p

=
l2p
r2c

(1.13)

Then λG ≪ 1 for m ≪ mp where mp = Planck mass and lp = Planck length. For

example, in the case of electron , me = 5× 10−4GeV/c2, we have

λG

λEM

≈ 10−43 (1.14)

The gravity effect is quite weak in this case. But if the mass is at Planck mass scale

mp, then λG ∼ O(1), which means quantum gravity effects become significant (the

corresponding length scale will be lp).

9



1.2.1 Schwarzschild Radius

1.2.1 Schwarzschild Radius

For an object of mass m, at what distance rs from it, the classical gravity becomes

strong ? To answer this question, we can consider a probe mass m′, then the classical

gravity becomes strong, means that

GNmm′/rs
m′c2

∼ 1 ⇒ rs =
GNm

c2
(1.15)

So now for an object of mass m, we have two important scales:

1. rc =
ℏ
mc

⇒ Reduced Compton wavelength.

2. rs =
2GNm

c2
⇒ Schwarzschild radius.

The pre-factor 2 of rs comes from a GR computation of a Schwarzschild black hole.

From rs
rc

∼ m2

m2
p
, we can conclude

1. m ≫ mp, rs ≫ rc: classical gravity (quantum effects not important);

2. m ≪ mp, rs ≪ rc : rs is not relevant, gravity effect is weak and not important;

3.m ∼ mp, rs ∼ rc quantum gravity effects are important.

If this were the whole story, life would be much simpler, but much less interesting.

However, black holes can make quantum gravity effects manifest at macroscopic level,

at length scales of O(rs).

Remark 1.2.1. lp can be thought as the minimal localization strength. In non-

gravitational physics, the probing length scale l ∼ ℏ
p
, in principle, can be as small

as one wants if one is powerful enough to get sufficiently large p. But with gravity,

when E ∼ p ≫ mp, then rs ∼ GNp
c3

takes over as the minimal scale. Since rs ∝ p,

so larger energies give larger length scales, lp is the minimal scale one can probe.

10



1.2.2 Classical Black Hole Geometry

Alternatively, consider uncertainty principle δp ∼ ℏ
δx
, then δx > GN δp

c3
∼ GNℏ

c3δx
, so

obtain δx >
√

ℏGN

c3
= lp.

1.2.2 Classical Black Hole Geometry

Black hole geometry is the solution of Einstein equation with zero cosmology con-

stant. The spacetime is due to an object of mass M. If we consider the object to

be spherically symmetric, non-rotational, neutral, we have the Schwarzschild metric

solution:

ds2 = −fdt2 +
1

f
dr2 + r2(dθ2 + sin2θdϕ2), f = 1− 2GNM

r
= 1− rs

r
(1.16)

The event horizon is defined at r = rs = 2GNM where gtt = 0, grr = ∞. When r

goes across the event horizon, f changes sign, r and t switches their role.

Remark 1.2.2. 1. It is time-reversal invariant, i.e. invariant under t → −t. It does

not describe a black hole formed from gravitational collapse which is clearly not

time-reversal symmetric, but it is a mathematical idealization of such a black hole.

2. The spacetime is non-singular at the horizon, as one can check this by com-

puting curvature invariants (I = RαβγδR
αβγδ = 48

G2
NM2

r6
=Kretschmann scalar). It

is only a coordinate singularity (not an intrinsic singularity), where t (Schwarzschild

time) and r coordinates become singular at the horizon.

3. The horizon is a surface of infinite redshift. Consider an observer Oh at the

hypersurface r = rh ≈ rs and another observer O∞ at the hypersurface r = ∞. At

r = ∞ : ds2 → −dt2 + dr2 + r2dΩ2, t is the proper time for O∞. On the other hand,

11



1.2.3 Rindler Spacetime and Causal Structure

at r = rh : ds2 = −f(rh)dt
2 + ··· = −dτ 2 + ··· . We have dτh = f 1/2(rh)dt, with τh

to be the proper time for Oh. Then

dτh
dt

= (1− rs
rh
)
1
2 (1.17)

As rh → rs,
dτh
dt

→ 0, i.e. compared to the time at r = ∞, the time at r = rh becomes

infinitely slow. Consider some event of energy Eh happening at r = rh, to O∞ this

event has energy E∞ = Ehf
1
2 (rh) i.e. for fixed local proper energy Eh, E∞ → 0 as

rh → rs, we call it infinitely redshifted.

4. It takes a free-fall traveler a finite proper time to reach the horizon, but infinite

Schwarzschild time.

5. Two intrinsic geometric quantities of the horizon:

• Area of a spatial section A = 4πr2s = 16πG2
NM

2

• Surface gravity: The acceleration of a stationary observer at the horizon as

measured by an observer at infinity is given by K = 1
2
f ′(rs) =

1
4GNM

1.2.3 Rindler Spacetime and Causal Structure

To understand the spacetime structure of a blackhole, let us consider the region near

(but outside) the horizon. Introducing the proper distance ρ from the horizon:

dρ =
dr√
f

r→rs−−−→ dr√
f ′(rs)(r − rs) + · · ·

(1.18)

⇒ ρ =
2√
f ′(rs)

√
r − rs (1.19)

12



1.2.3 Rindler Spacetime and Causal Structure

We can express it as a function of ρ

f(r) = f ′(rs)(r − rs) + · · · = (
1

2
f ′(rs))

2ρ2 + · · · = K2ρ2 + · · · (1.20)

Where K is the surface gravity. Near the horizon, we have

ds2 = −K2ρ2dt2 + dρ2 + r2sdΩ
2
2 = −ρ2dη2 + dρ2 + r2sdΩ

2
2 (1.21)

Here we define η = Kt = t
2rs

. The first two terms in the above expression is called

(1+1)d Minkowski metric in a Rindler form.

Consider M2 (2d Minkowski spacetime):

ds2M2
= −dT 2 + dX2 (1.22)

Let X = ρ cosh η, T = ρ sinh η, then

ds2M2
= −ρ2dη2 + dρ2 (1.23)

But since X2 −T 2 = ρ2 ≥ 0, (ρ, η) coordinates only covers a part of M2. And ρ ≥ 0

sector corresponds to X ≥ 0 i.e. region I as shown in Fig 1.1.

13



1.2.3 Rindler Spacetime and Causal Structure

Figure 1.1: Causal structure of M2 in the Rindler form.

Note that,

1. X = T (X > 0) : η → ∞, ρ → 0 with ρeη finite

2. X = −T (X > 0) : η → −∞, ρ → 0 with ρe−η finite

3. X = T =) : ρ → 0, any finite η

Thus the horizon of a black hole ρ = 0 is mapped to a light cone X = ±T . And near

horizon black hole geometry can be viewed as Rindler ×S2 as shown in fig 1.2

14



1.2.3 Rindler Spacetime and Causal Structure

Figure 1.2: Black hole geometry near horizon.

Remark 1.2.3. 1. An observer at r = const(r ≥ rs) is mapped to and observer with

ρ = const in a Rindler patch, i.e. an observer in Minkowski space-time following

a hyperbolic trajectory X2 − T 2 = ρ2 = const. Such an observer has a proper

acceleration

a =
1

ρ
=

f ′(rs)

2

1√
r − rs

(1.24)

And furthermore, the acceleration seen by O∞ would be a∞ = a(r)f 1/2(r) = K.

2. A free-fall observer near a black hole horizon is equal to an inertial observer

in M2.

3. Rindler coordinates(ρ, η) become singular at ρ = 0, but using Minkowski

coordinates (X,T), one could extent region I to the full Minkowski spacetime. Simi-

larly, by changing to suitable coordinates (Kruskal coordinates), one can extend the

Schwarzschild spacetime to four patches (Fig.1.3).

• Clearly, no information or observer in region II can reach region I (separated

15



1.2.4 Penrose Diagram

by a future horizon).

• Region III and IV are related to I and II by time reversal. They do not exist for

real blackholes formed from gravitational collapse. Observer in region I cannot

influence events in region IV (separated by a past horizon).

• At r=0, there is a black hole singularity, called curvature singularity which is

space-like.

Figure 1.3: Schwarzschild black hole geometry in Kruskal coordinates.

1.2.4 Penrose Diagram

In this section, we study Penrose diagrams, which are used to visualize the global

causal structure of a spacetime. We start with the metric: ds2 = gab(x)dx
adxb

1. Find a coordinate transformation xa = xa(yα) so that yα has a finite range

(map the whole spacetime to a finite region).

16



1.2.4 Penrose Diagram

2. Construct a new metric which is conformally related to the original one

ds̃2 = Ω2(y)ds2 = g̃αβ(y)dy
αdyβ (1.25)

Such that g̃αβ is simple. ds̃2 and ds2 have the same causal structure as null

rays are preserved by conformal scalings.

Example : (1+1)d Minkowski space

ds2 = −dT 2 + dX2 = −dUdV ; U = T −X, V = T +X

let U = tanu, V = tan v, then u, v ∈ [−π
2
, π
2
]. We define the following:

• i0: spatial infinity (X infinite, T finite)

• i+: time-like future infinity (T → ∞, X finite)

• i−: time-like past infinity (T → −∞, X finite)

• I+: null future infinity (where all null rays end)

• I−: null past infinity (where all null rays start)

Label these points (lines) accordingly in the Penrose diagram for M2 in fig. 1.4
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1.2.4 Penrose Diagram

Figure 1.4: M2 Penrose diagram.

Another more interesting example is the Schwarzschild black hole

• We first consider (r, t) plane

• Then we go to a coordinate system (Kruskal) which covers all four regions

(analogue of U, V in Minkowski spacetime).

• Next we make a coordinate transformation to make the new coordinate with a

finite range (U, V ) → (u, v)

Figure 1.5: M2 Schwarzschild black hole Penrose diagram.
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1.2.5 Black Hole Temperature

1.2.5 Black Hole Temperature

In QFT, to describe a system at finite temperature (T), we analytically continue

to Euclidean signature, i.e. t → −τ . And let τ to be periodic: τ ∼ τ + ℏβ, with

β = 1
T
. If we analytically continue the Schwarzschild metric to Euclidean signature

with t → −iτ , near horizon we get

dS2
E = ρ2K2dτ 2 + dρ2 + r2dΩ2

2 = dρ2 + r2sdΩ
2
2; θ = Kτ =

τ

2rs
(1.26)

Note that the first two terms above describe a polar coordinates in Euclidean R2.

This metric has a conical singularity unless θ is periodic in 2π, i.e. θ ∼ θ + 2π.

Since horizon is non-singular in Lorentzian signature, it should not be singular in

Euclidean. Hence τ must be periodic

τ ∼ τ +
2π

K
(1.27)

Recall that t is the proper time for an observer at r = ∞, an observer at r = ∞

must feel a temperature :

T =
1

β
=

ℏK
2π

=
ℏ

8πGNm
(1.28)

Figure 1.6: Schwarzschild black hole near horizon geometry in Minkowski (left) and
Euclidean (right) signature.
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1.2.5 Black Hole Temperature

For an observer at some r, since dtloc = f
1
2 (r)dt, we have This local temperature

goes to ∞ as we approach the horizon, i.e. the black hole horizon is a very hot place

for a stationary observer!

Similarly for Rindler spacetime

ds2 = −ρ2dη2 + dρ2 → η = −iθds2E = ρ2dθ2 + dρ2 (1.29)

Since θ must be periodic in 2π, we define the local proper time: dτ 2loc = ρ2dθ2. Then

τloc must be periodic

TRindler
loc (ρ) =

ℏ
2πρ

=
ℏa
2π

(1.30)

where a = 1
ρ
. So in Minkowski spacetime, an accelerated observer will feel a temper-

ature proportional to its acceleration!

Figure 1.7: Rindler spacetime in Minkowski (left) and Euclidean (right) signature.

Physical interpretation of the temperature

Consider a QFT in a black hole spacetime. The “vacuum” state obtained via this an-

alytic continuation procedure from the Euclidean signature is a thermal equilibrium

state with the stated temperature.
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1.2.6 Black Hole Thermodynamics

Remark 1.2.4. 1. The choice of vacuum for a QFT in a curved spacetime is not

unique. In the Schwarzschild black hole case, it is the “Hartle-Hawking vacuum”;

while in the Rindler case, it is the Minkowski vacuum reduced to the Rindler patch

(reduced density matrix of the Minkowski vacuum).

2. If for a black hole, in Euclidean signature we take τ to be noncompact, then

it is the Schwarzschild vacuum (Boulware vacuum). This is the vacuum that one

would get by doing canonical quantization in terms of the Schwarzschild time t. In

the Rindler case, if we take θ to be noncompact, we have Rindler vacuum, which can

be obtained by doing canonical quantization in Rindler patch in terms of η.

3. In the Schwarzschild vacuum, since the correspoding Euclidean manifold is

singular at the horizon, physical observables are often singular there, e.g. stress

tensor blows up there. But in Lorentzian signature, this is not the case.

1.2.6 Black Hole Thermodynamics

From the previous discussion, we know that a black hole has a temperature:

TBH =
ℏ

8πGNm

Thus a black hole is a thermodynamic object, and it must obey thermodynamics.

Now recall thermodynamic relations:

dS

dE
=

1

T (E)
=

8πGNm

ℏ
(1.31)
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1.2.6 Black Hole Thermodynamics

since for a black hole E = m, Entropy

S(E) =

∫
dE

T (E)
=

4πGNE
2

ℏ
+ const =

4πr2s
4ℏGN

=
ABH

eℏGN

(1.32)

The integral constant can be determined to be 0 since S(E)=0 for E=0, ABH is the

area of black hole horizon. So we now have the most important conclusion for black

hole

TBH =
ℏK
2π

, SBH =
ABH

4ℏGN

(1.33)

Note that TBH decreases as mass m increases, the system has a negative specific

heat:

C = T
∂S

∂T
=

∂E

∂T
< 0 (1.34)

General Black Holes

Theorem 1.2.5. No hair theorem:A stationary, asymptotically flat black hole is

characterized by its mass M, angular momentum J, conserved gauged charges (e.g

electric charges Q).

Now we summarize four laws of black hole mechanics:

• 0th law: Surface gravity K is constant over the horizon.

• 1st law:

dM =
K

8πGN

dA+ ΩdJ + ϕdQ (1.35)

⇒ dE = TdS + ΩdJ + ϕdQ (1.36)
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1.2.6 Black Hole Thermodynamics

where Ω is the angular frequency at the horizon, ϕ is the electric potential at

the horizon (assume that at ∞ the potential is 0.)

• 2nd law: Horizon area never decreases classically.

• 3rd law: Surface gravity of a black hole cannot be reduced to 0 in a finite

number of steps.

Historically, before Hawking’s discovery of black hole radiation, Bekenstein(1972-

1974) has found SBH ∼ AH ,the motivation is to save the 2nd law of thermodynamics

for a system with blackholes. If an ordinary system falls into a blackhole, the ordinary

entropy becomes invisible to an exterior observer, therefore we have the generalized

2nd law(GSL):

dStot ≥ 0; Stot = SBH + Smatter

Consequently, we get some puzzles/paradoxes

1. Does black hole entropy has a statistical interpretation ?

2. Does black hole respect quantum mechanics ?

The first question has been answered in the affirmative for many different types of

black holes in string theory and holographic duality. That is a black hole has internal

states of order:

N ∼ e
ABH
4ℏGN (1.37)

The second question is related to Hawking’s information loss paradox. The rough

description of this paradox is: consider a star in a pure state collapse to form a black
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1.2.6 Black Hole Thermodynamics

hole, which then radiates thermally. If to a good approximation, the radiation is

thermal form ≫ mp, so beforem ∼ O(mp), very little information about the original

state can come out. Once m ∼ O(mp), it will be too late for all the information to

go out. Then we start from a pure state and eventually get into a thermal state with

density matrix description, i.e. information is lost!
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Chapter 2

Holographic Duality

2.1 Holographic Principle

If we do treat black hole as an “ordinary” QM object, an important implication

would be the holographic principle.

Consider an isolated system of mass E and entropy S0 in an asymptotic flat

space-time. Let A be the area of the smallest sphere that encompasses the system,

and MA to be the mass of a black hole with the same horizon area, we must have

E < MA, otherwise the system would be already a black hole.

Now add MA−E energy to the system (keeping A fixed), we shall obtain a black

hole with mass MA,since

SBH ≥ S0 + S ′ (2.1)

25



2.2 Large N Expansion of Gauge Theories

where S ′ is the entropy of added energy, we conclude that

S0 ≤ SBH =
A

4ℏGN

(2.2)

i.e. the maximal entropy inside a region bounded by area A is,

Smax =
A

4ℏGN

(2.3)

Recall the definition of entropy in quantum statistical physics: S = −Trρlogρ, where

ρ is the density matrix for the state of a system. For a system with N-dimensional

Hilbert space

Smax = logN (2.4)

Hence the effective dimension of Hilbert space for system inside a region of area A

is bounded by,

logN ≤ A

4ℏGN

=
A

4l2p
(2.5)

Holographic Principle: In quantum gravity, a regime of boundary area A can be

fully described by no more than A
4ℏGN

= A
4l2p

d.o.f.

2.2 Large N Expansion of Gauge Theories

We now look at clues to holographic duality from field theory side. Consider QCD

which can be described as SU(3) gauge theory with fundamental quarks. The La-

grangian reads

L =
1

g2YM

[
−1

4
TrFµνF

µν − iΨ(̸D −m)Ψ

]
(2.6)
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2.2 Large N Expansion of Gauge Theories

where Dµ = ∂µ − iAµ, Aµ are 3 × 3 Hermitian matrices and can be expressed as

Aµ = Aa
µT

a, with T a ∈ SU(3) In such a theory, coupling becomes strong in IR

(ΛQCD ∼ 250 MeV), there is no small parameter to expand. It is still an open

problem to derive IR properties of QCD from the first principle.

t’ Hooft in 1974 suggested to take the number of colors N = 3 as a parameter,

i.e. promote Aµ to N × N hermitian matrices and consider N → ∞ and do 1
N

expansion. It is an ingenious idea. Unfortunately, QCD still can not be solved to

leading order in the large N limit. Surprisingly, there is an correspondence between

the large N gauge theory and the string theory. The key is that fields are matrices.

As an illustration, we will consider a scalar theory:

L = − 1

g2
Tr

[
1

2
∂µΦ∂

µΦ +
1

4
Φ4

]
(2.7)

where g is the coupling constant, Φ(x) ≡ Φa
b (x) : N ×N hermitian matrix. In terms

of components

L = − 1

g2

[
1

2
(∂µΦ

a
b )(∂

µΦb
a) +

1

4
Φa

bΦ
b
cΦ

c
dΦ

d
a

]
(2.8)

L is invariant under U(N) global symmetry.

Remark 2.2.1. 1. It is a theory of N2 scalar fields.

2. One can also consider other types of matrices, e.g.N×N real symmetric matrix,

the corresponding symmetry will be SO(N).

3. One could also introduce gauge fields to make U(N) symmetry local.

Here we list the Feynman rules for this theory: The propagator:
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2.2.1 Vaccum Energy

The fermion vertex:

So here we can adapt the double line notation:

2.2.1 Vaccum Energy

We consider vacuum bubbles, i.e. diagrams with no external legs. The lowest order

diagrams will be
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2.2.1 Vaccum Energy

In the case of diagram 1, each contracted index line gives N, so the total contri-

bution will be of the order N3 (g
2)2

g2
= N3g2 In the case of diagram 2, there is only

one contracted line, the total contribution will be of the order Ng2. The difference

comes from the fact that the matrices do not commute. In the first case, the diagram

can be drawn on a plane without crossing lines, we call it a plannar diagram; while

in the second case, the diagram cannot be drawn on a plane without crossing lines,

we call it a non-planar diagram.

If we consider next order in the perturbation theory

The first diagram gives the order of N4g4, the second diagram gives the order

of N2g4. We can further consider higher order diagrams, but how can we obtain

general N-counting? And how to classify all the non-planar diagrams ?

To answer the above questions, we make 2 observations

• Diagrams 2 and 4 can be drawn on a torus without crossing lines.
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2.2.1 Vaccum Energy

• The power of N for each diagram equals to the number of faces in the diagram

after we straighten it out.

In fact, any orientable two dimensional surface is classified topologically by an integer

h, called the genus. The genus is equal to the number of “holes” that the surface has

Figure 2.1: sphere (genus-0), torus (genus-1) and double torus(genus-2).

An topological invariant of the manifold is the Euler character:

χ = 2− 2h (2.9)

1. For any non-planar diagram, there exists an integer h, such that the diagram

can be straightened out (i.e. non-crossing) on a genus-h surface, but not on a

surface with a smaller genus.

2. For any non-planar diagram, the power of N that comes from contracting prop-

agators is given by the number of faces on such a genus-h surface, i.e. the

number of disconnected regions separated by the diagram.

30



2.2.1 Vaccum Energy

In general, a vacuum diagram has the following dependence on g2 and N:

A ∼ (g2)E(g2)−VNF (2.10)

where E is the number of propagators, V is the number of vertices, F is the number

of faces. This does not give a sensible N → ∞ limit or 1
N

expansion, since there is

no upper limit on F. However, ’t Hooft suggests that we can take the limit N → ∞

g2 → 0 but keep λ = g2N fixed. Then if L is the number of loops,

A ∼ (g2N)E−VNF+V−E = λL−1Nχ (2.11)

Theorem 2.2.2. Given a surface composed of polygons with F faces, E edges and V

vertices, the Euler character satisfy

χ = F + V − E = 2− 2h (2.12)

Since each Feynman diagram can be considered as a partition of the surface

separating it into polygons, then the above theorem also works for our counting in

N.

Thus in this limit, to the leading order in N are the planar diagrams

N2(c0 + c1λ+ c2λ
2 + · · · ) = N2f0(λ) (2.13)

Because logZ evaluates the sum of all vacuum diagrams, we can conclude, including
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2.2.2 General Observables

higher order 1/N2 corrections:

logZ =
∞∑
h=0

N2−2hfh(λ) = N2f0(λ) + f1(λ) +
1

N2
f2(λ) + · · · (2.14)

The first term comes from the planar diagrams, second term from the genus-1 dia-

grams, etc.

There is a heuristic way to understand logZ = O(N2)+· · · . Since Z =
∫
DΦeiS[Φ]

and we can rewrite the Lagrangian as

L =
N

λ
Tr

[
1

2
(∂Φ)2 +

1

4
Φ4

]
(2.15)

The trace also gives a factor of N, thus L ∼ O(N2) and we have logZ ∼ O(N2).

2.2.2 General Observables

Consider allowed operators in the two theories. In eq.(2.7), operators like Φa
b are

allowed, although it is not invariant under global U(N) symmetry. But in eq.(2.6),

allowed operators must be gauge invariant, so Φa
b is not allowed. So if we consider

gauge theories: L = L(Aµ,Φ, · · · ), the allowed operators will be

1. Single-trace operators : Tr(FµνF
µν), T r(Φn)

2. Multiple-trace operators : Tr(FµνF
µν)Tr(Φ2), T r(Φ2)Tr(Φn)Tr(Φn), · · ·

We denote single-trace operators as Ok, k = 1; · · · represents different operators.

Then multiple-trace ones will be like OmOn(x),Om1Om2Om3(x), · · ·
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2.2.2 General Observables

So general observables will be correlation functions of gauge invariant operators,

here we focus on local operators :

⟨O1(x1)O2(x2) · · · On(xn)⟩c (2.16)

Since we are working in the t’Hooft limit, we want to know how correlation (Eq.2.16)

scales in the large N limit. There is a trick, consider

Z [J1, · · · , Jn] =
∫

DAµDΦ · · · eiSeff =

∫
DAµDΦ · · · e[iS0+iN

∑
i

∫
Ji(x)Oi(x)] (2.17)

Then the correlation (Eq. 2.16) can be expressed as

⟨O1(x1)O2(x2) · · · On(xn)⟩c =
δnlogZ

δJ1(x1) · · · δJn(xn)

∣∣
J1=···=Jn=0

1

(iN)n
(2.18)

Applying eq. 2.18 on eq. 2.14 we get,

⟨I⟩ ∼ O(N2) +O(N0) + · · · (2.19)

⟨O⟩ ∼ O(N) +O(N−1) + · · · (2.20)

⟨O1O2⟩c ∼ O(N0) +O(N−2) + · · · (2.21)

⟨O1O2O3⟩c ∼ O(N−1) +O(N−3) + · · · (2.22)

All leading order contributions come from planar diagrams.

Physical Implications :

1. In the large N limit, O(x)|0⟩ can be interpreted as creating a single-particle

state(“glue ball”). Similarly : O1 · · · On(x) : |0⟩ represents n-particle state.
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2.2.2 General Observables

2. The fluctuations of “glue balls” are suppressed.

3. If we interpret as “scattering amplitude” of n “glue balls”, then to the lead-

ing order in N → ∞, the scattering only involve tree-level interactions (only

classical), among the glue ball states.

(a) Consider

suppose we treat it as a basic vertex with coupling g̃, then the tree-level

amplitude for n-particle scattering scales as g̃n−2 ∼ N2−n.

(b) We can also include higher order vertices, but they should satisfy:

(c) There are no more than one-particle intermediate states. If we insert a

complete set of states at all possible places, due to large N counting, all

states other than-single particle ones are suppressed:
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2.3 Large N Expansion As a String Theory

Compared to

i.e. all “loops” of glue balls are suppressed.

More explicitly
Gauge theory with finite ℏ in the N → ∞ limit = Glue ball theory

Perturbative expansion in 1/N = Loops of glue balls perturbative in ℏ

2.3 Large N Expansion As a String Theory

QFT can be considered as a theory of “particles”. The standard quantization ap-

proach is second quantization. In the first quantization approach, we directly quan-

tize the motion of a particle in space time. We have

Z =

∫
DXµ(τ)eiSparticle (2.23)
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2.3.1 String Theory

Where,

Sparticle = m

∫
dl = m

∫
dτ

dl

dτ
= m

∫
dτ

√
gµν

dXµ

dτ

dXν

dτ
(2.24)

If we want to include interactions like λϕ3, we need to add them by hand.

2.3.1 String Theory

In string theory, similarly, we need to quantize the motions of strings in space-time.

The simplest form of Sstring is the Nambu-Goto action

SNG = T

∫
Σ

dA (2.25)
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2.3.1 String Theory

Here, T = 1
2πα′ is the string tension(mass per unit length). dA =

√
−det(hab)dσdτ is

the infinitesimal area of the world sheet with the induced matrix hab = gµν∂aX
µ∂bX

ν

To define and evaluate eq.[ (2.3)], the most convenient way is to go to Euclidean

signature. For vacuum processes:

Zstring =
∑

all closed surfaces

e−SNG =
∞∑
h=0

e−λχ
∑

surfaces with given topology

e−SNG (2.26)

here χ = 2 − 2h denotes the weight for different topologies, λ can be thought as

the “chemical potential” for topology. If we define gs = eλ, the vacuum includes

diagrams like

There is a remarkable fact about string theory: summing over topology of all

surfaces automatically includes interactions of strings. In fact this fully specifies

string interactions with no freedom of making arbitrary choices. To see this,

The surface can be thought as the vacuum bubble, at the south pole the string

37



2.3.1 String Theory

nucleates from vacuum and at the north pole, the string disappears into the vacuum.

The torus can be thought as the one loop diagram, the string split into two strings

and then join together again with interaction strength gs on each vertex. Thus the

basic interaction vertices are the splitting and rejoining of the strings, the coupling

strength is gs = eλ :

Now we include external strings, e.g.

string + string → string + string (2.27)

In the diagrammatic language:
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2.3.1 String Theory

where χ = 2− 2h− n, where n is the number of boundaries (number of external

strings).

Thus for n-string scattering process (including vacuum processes, i.e. n = 0)

An =
∞∑
h=0

gn−2+2h
s F (h)

n = gn−2
s F (0)

n︸ ︷︷ ︸
tree-level diagrams
(sphere topology)

+ gnsF
(1)
n︸ ︷︷ ︸

1-loop diagrams
(torus topology)

+ gn+2
s F (2)

n︸ ︷︷ ︸
2-loop diagrams

(double torus topology)

(2.28)

Now comparing with the large N expansion of a gauge theory as we discussed earlier

(including n=0)

⟨O1(x1)O2(x2) · · · On(xn)⟩c =
∞∑
h=0

N2−n−2hf (h)
n = N2−nf (0)

n︸ ︷︷ ︸
planar diagrams
(sphere topology)

+ N−nf (1)
n︸ ︷︷ ︸

torus diagrams

+N−n−2f (2)
n︸ ︷︷ ︸

double-torus
diagrams

(2.29)

Comparing eq.[ (2.28)] and eq.[ (2.29)], we see an identical mathematical structure

of the two theories with the identification:

eλ = gs ↔ 1
N

external strings ↔ “glue balls” (single trace operator) Oi(x) |0⟩
sum over string world
sheet of given topology↔

sum over Feynman
diagrams of given topology

topology of the world sheet ↔ topology of Feynman diagrams

Recall that each Feynman diagram can be considered as a partition of a genus-h

surface. The scattering amplitude of n particles on genus-h surface can be written

as,

f (h
n =

∑
all Feynman diagrams of genus-h

G =
∑

all possible triangulations of genus-h surface

G (2.30)
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2.3.1 String Theory

Here G represents the expression for each diagram. Similarly in string theory, we

have n-string scattering process,

F (h
n =

∫
genus h surfaces
with n boundaries

DXe−Sstring =
∑

all possible triangulations of
genus-h surfaces with n boundaries

e−Sstring (2.31)

If we could identify G with some e−Sstring , we will then have:

a large N gauge theory = a string theory

1
N

expansion = perturbative expansion in gs

large N limit (classical theory of glue-balls) = classical string theory

single-trace operators (glueballs) = string states

In fact this identification is difficult:

• String theory is formulated in the continuum, while the Feynman diagrams at

best has a discrete version (triangulation of the manifold).

• The action Sstring gives a map from the world sheet Σ to the target space M

(space time manifold) (σ, τ) → Xµ(σ, τ). In such a map, we can make choices

of space time manifold M, the specific forms of the action Sstring, we can also

have “internal” d.o.f. living on the world sheet with no immediate space-time.

For example, it can be super strings, including fermions on the world sheet.

Generalizations:

1. We have so far been restricted to matrix-valued fields, i.e. fields in the ad-

joint representation of U(N) gauge group. One could also include fields in the
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2.3.1 String Theory

fundamental representation (quarks)

q =


q1

q2
...

qN


e.g., vacuum diagrams now include loops of quarks, which can be classified

topologically by 2d surfaces with boundaries, then it corresponds to a string

theory with both open and closed strings.

2. So far we considered U(N) gauge group,

If instead, we consider SO(N) or SP(N), then there is no divergence between

the two indices of the fields,

Now take e.g. large N generalization of QCD in (3+1)d Minkowski spacetime. Sup-

pose 1
N

expansion can be described by a string theory, what can we say about it?

The simplest guess would be a string theory in (3+1)d Minkowski space

ds2 = −dt2 + dx⃗2 (2.32)
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2.3.1 String Theory

We can consider Nambu-Goto action or the Polyakov action which is equivalent to

SNG classically. But this does not work:

1. Such a string theory is inconsistent for D ̸= 10, 26; where D is the spacetime

dimension.

2. Take a string theory in 10d with M4×N , where N is some compact manifold.

Such a theory contains a mass-less spin-2 particle (graviton) in M4, which is

not present in Yang-Mills theory.

To solve the problem, we can either think about more exotic string actions or consider

other target space. Actually there are hints for considering a 5d string theory:

1. Holographic principle

String theory necessarily contains gravity, to be consistent with holographic

principle, such a gravity theory should be in 5d.

2. The consistency of string theory itself:

It needs to include a Liouville mode which behaves as on extra dimensions.

Now consider a string Y in 5d space-time. It should at least have all the symmetries

of 4d YM theories, e.g. translations, Lorentz symmetries etc. i.e. consider,

ds2 = a2(z)
[
dz2 + ηµνdX

µdXν
]

(2.33)

which is the most general metric consistent with 4d Poincare symmetries. But if a

theory is conformal, or simply scale invariant, Eq. [ (2.33)] should be the AdS metric.
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2.3.1 String Theory

This is simple to see. If Eq.[ (2.33)] is invariant under scaling transformation,

Xµ = λXµ (2.34)

Then we must have z → λz and a(λz) = 1
λ
a(z), which means a(z) = R

z
with R

constant. Now as a closing touch, we make a list of the history, of the discovery of

the holographic duality.

1974 (continued)

Lattice QCD (Wilson), confining

strings

1993-1994

Holographic principle (t’ Hooft,

Susskind)

1997 June

Need 5D string theory to describe QCD

(Polyakov)

1995

D-branes (Polchinski)

1997 Nov

AdS/CFT (Maldacena)

1998 Feb

Connection between holographic prin-

ciple and large N gauge theory/string

theory duality (Witten)
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Chapter 3

Deriving AdS/CFT

3.1 Perturbative (Bosonic) String Theory

3.1.1 General Set Up

Consider a string moving in a spacetime M with the metric (µ, ν = 0, 1, ..., d− 1) :

ds2 = GµνdX
µdXν (3.1)

With the world-sheet Σ parametrizations (a = 0, 1):

Xµ(σ, τ) = Xµ(σa) (3.2)
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3.1.1 General Set Up

The induced metric on Σ is written as:

hab = Gµν∂aX
µ∂bX

ν , ds2 = hab(σ, τ)dσ
adσb (3.3)

The string action is defined to be proportional to the area of Σ, written in the

following Nambu-Goto form:

SNG[X
µ] =

1

2πα′

∫
Σ

dA =
1

2πα′

∫
Σ

d2σ
√
−h; [α′] = L2 → α′ = l2s , T =

1

2πα′

(3.4)

with ls is the string length scale (from dimensional analysis) and T is the string

tension. Here d2σ = dσdτ

Since the non-polynomial nature of SNG is inconvenient for calculations, it’s much

easier to work with the Polyakov’s action, which is equivalent to the Nambu-Goto’s

action at classical level 1:

SP [γ
ab, X] =

1

4πα′

∫
d2σ

√
−γγab∂aX

µ∂bX
νGµν ; γab ≡ γab(σ, τ) (3.5)

Equation of Motion for γab :

γab =
λ

2
hab (3.6)

Here, λ : arbitrary function. So, γabhab =
2
λ
× 2 and

√
−γ = λ

2

√
−h. Eq.[ (3.5)] has

the form of a 2-d scalar field theory in curved space-time Σ with metric γab. The

1To see this, note that world-sheet stress-energy tensor is defined as:

Tab = −4π
δSP√
−γδγab

(3.7)
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3.1.1 General Set Up

string path integral quantization will be based on

∫
DγabDXµeiSP [γab,Xµ] . . . (3.12)

For the sake of understanding the physical spectrum of strings, then canonical quan-

tization is more convenient. The Polyakov Lagrangian:

SP =

∫
Σ

d2σLP (3.13)

Symmetries of eq.[ (3.5)] :

1. Global Poincare transformation (translation and Lorentz rotation):

Xµ(σ, τ) → Xµ + aµ; Xµ → Λµ
νX

ν (3.14)

Since δSP = 0 for variations around the classical solution (on-shell), the equation of motion for γab

is Tab = 0. Using:

δ
√
−γ = −1

2

√
−γγabδγ

ab (3.8)

then the stress-energy tensor can be found:(∫
Σ

d2σ

)−1

δSP = − 1

4πα′

(
δ
√
−γγabhab +

√
−γδγabhab

)
=

1

4πα′
√
−γ

(
1

2
γabγ

cdhcd − hab

)
δγab

(3.9)

⇒ Tab =
1

α′

(
1

2
γabγ

cdhcd − hab

)
=

1

α′Gµν

(
1

2
γabγ

cd∂cX
µ∂dX

ν − ∂aX
µ∂bX

ν

)
= 0 (3.10)

This means γab = Bhab, with B = B(σ, τ) can be arbitrary. Integrate out the world-sheet intrinsic
metric field γab:

SP

[
γab = Bhab, Xµ

]
=

1

4πα′

∫
Σ

d2σ
(
B−1

√
−h
) (

Bhab
)
(hab) =

1

2πα′

∫
Σ

d2σ
√
−h = SNG [Xµ]

(3.11)
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3.2 Light-Cone Quantization

2. Local diffeomorphism transformation (σa → σ′a) :

Xµ(σ, τ) → X ′µ(σ′, τ ′) = Xµ(σ, τ); γab → γ′ab =
∂σ′a

∂σc

∂σ′b

∂σd
γcd(σ, τ) (3.15)

3. Local Weyl transformation:

γab → e−2ω(σ,τ)γab(σ, τ) (3.16)

These symmetries (Poincare and Diff × Weyl) can be used as the guiding principles

to (almost) uniquely determined the string action in eq:[ (3.5)]. Indeed, for example,

in a topological invariant of 2D oriented closed surfaces, the 2D Einstein-Hilbert

action also fits the bill:

Sχ[γ
ab] = λ

(
1

4π

∫
Σ

d2σ
√
−γR

)
= λχ (Σ) ; χ (Σ) = 2− 2g (3.17)

Here, R = Ricci scalar.

3.2 Light-Cone Quantization

Each physical oscillation mode of a string corresponds to a particle in space-time.

For mass-less mode, closed string gives a spin 2 particle (graviton) and open string

gives a spin 1 particle (gauge particle, like photon or gluon).

The canonical quantization procedure:

1. Write down the classical equation of motion.
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3.2 Light-Cone Quantization

2. Fix the gauge symmetries.

3. Find the complete set of classical solution.

4. Promote classical fields (on world-sheet) to quantum operators, satisfying canon-

ical quantization condition. The classical solutions become solutions to oper-

ator equation, and the parameters in classical solutions become creation and

annihilation operators.

5. Read-of the spectrum by acting creation operators on the vacuum of the (2D

world-sheet) theory.

The classical equation of motion from eq.[ (3.5)]

1. For γab :

0 = Tab = ∂aX
µ∂bXµ −

1

2
γabγ

cd∂cX
µ∂dXµ (3.18)

2. For Xµ :

∂a
(√

−γγab∂bX
µ
)
= 0 (3.19)

By diffeormophism, the metric can be put in the conformally flat form γab = e2ω(σ,τ)ηab,

and Weyl rescaling can be used to get γab = ηab. Now from eq.[ (3.19)]

∂2
τX

µ − ∂2
σX

µ = 0 (3.20)

From eq.[ (3.2)], we get,

T00 = T11 =
1

2
(∂τX

µ∂τXµ + ∂σX
µ∂σXµ) = 0 (3.21)

Tτσ = Tστ = ∂τX
µ∂σXµ = 0 (3.22)
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3.2.1 Light Cone Gauge

eq.[ (3.21)] and eq.[ (3.22)] are the Virasoro constraints. For open string with Neu-

mann condition ∂σX
µ(σ = 0, π; τ) = 0. Eq.[ (3.20)] can be immediately solved

(xµ, vµ) can be arbitrary constants):

Xµ(σ, τ) = xµ + vµτ +Xµ
R(τ − σ) +Xµ

L(τ + σ) (3.23)

For closed strings XR, XL are independent periodic functions of 2π. For open strings

applying Neumann condition, we get

X ′
L(τ) = X ′

R(τ) at σ = 0 (3.24)

X ′
L(τ − π) = X ′

R(τ + π) at σ = π (3.25)

We get XL = XR and is periodic in 2π.

3.2.1 Light Cone Gauge

After fixing the worldsheet metric, one still have residual gauge freedom (conformal

symmetry). Let’s introduce:

σ± =
τ ± σ√

2
; ds2 = −dτ 2 + dσ2 = −2dσ+dσ− (3.26)

hence this symmetry can be viewed as the preservation of γab = ηab (up to a Weyl

rescaling) as:

σ+ → σ̃+ = f(σ+); σ− → σ̃− = g(σ−); ds2 → −2∂+f∂−gdσ
+σ− (3.27)
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3.2.1 Light Cone Gauge

τ̃ =
f(τ + σ) + g(τ − σ)√

2
⇒ τ (3.28)

which has the same form as the classical solution of Xµ, then one can fix the gauge

completely by choosing appropriate f and g so that:

τ =
X+

v+
; X± =

X0 ±X1

√
2

(3.29)

This is known as the light-cone gauge, as the worldsheet time is fixed by the spacetime

light-cone coordinate. With Xµ = (X+, X−, X i) (the transverse directions i =

2, 3, · · · , d−1) : dXµdXµ = −2dX+dX−+dX idX i. In light-cone gauge, the Virasoro

constraints [ (3.21) and (3.22)] become:

2v+∂τX
− =

(
∂τX

i
)2

+
(
∂σX

i
)2

(3.30)

v+∂σX
− = ∂σX

i∂σX
i (3.31)

The independence degrees of freedom are X i. Since X0 has a “wrong” sign for its

kinetic terms, no X0 in these degrees of freedom actually partly solve a problem of

unitarity at quantum level.

Now eq.[ (3.23)] expanding in Fourier series, for closed string we get

Xµ(σ, τ) = Xµ + vµτ + i

√
α′

2

∑
n̸=0

1

n

(
αµ
ne

−in(τ+σ) + α̃µ
ne

−in(τ−σ)
)

(3.32)

It’s similar for open string, but from Xµ
R = Xµ

L one arrives at αµ
n = α̃µ

n :

Xµ(σ, τ) = Xµ + vµτ + i
√
2α′
∑
n̸=0

1

n
αµ
ne

−inτcosnσ (3.33)
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3.2.1 Light Cone Gauge

The center off mass motion can be found by averaging the position of the strings at

a given time slice (l = 2π for closed strings and l = π for open strings):

1

l

∫ l

0

dσXµ(σ, τ) = xµ + vµτ (3.34)

The constant vµ is identified with the strings’ center of mass velocity.

The classical coefficients αµ
n and α̃µ

n keep track of the oscillation modes of the

strings. While the closed strings have independent left-moving and right-moving

contributions, open string can be described as standing waves so that left-moving

and right-moving are the same.

In the light-cone gauge, X+ = v+τ and X− can be obtained by writing X− in

Fourier expansion, plugging equations [ (3.32)] and [ (3.33)] into equations [ (3.30)]

and [ (3.31)] then equating the coefficients of different Fourier modes. The 0th (non-

oscillating) mode gives the relations between the strings’ center of mass velocity and

the strings’ oscillation modes. Now we get,

2v+v− = v2i + 2α′
∑
m̸=0

αi
−mα

i
m (open) (3.35)

2v+v− = v2i + α′
∑
m̸=0

(
αi
−mα

i
m + α̃i

−mα̃
i
m

)
(closed) (3.36)

Poincare global symmetries of the action corresponds to the conserved currents on

the worldsheet. For the moment, let’s look at translation and apply the standard

Noether procedure:

Πµ
a =

1

2πα′∂aX
µ (3.37)

Also note that ∂aΠµ
a = 0, from the equation of motion for Xµ. Πµ

τ is the momen-
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3.2.2 Quantization :

tum density along the string, and the corresponded conserved current is the string

momentum in space-time:

pµ =

∫ l

0

dσΠµ
τ =

l

2π

vµ

α′ (3.38)

The mass-squared is related to the spacetime momentum of the strings (the mass

shell condition): M2 = −pµpµ = 2p+p− + p2i

M2 =
1

2α′

∑
m ̸=0

αi
−mα

i
m (open) (3.39)

M2 =
1

α′

∑
m ̸=0

[
αi
−mα

i
m + α̃i

−mα̃
i
m

]
(closed) (3.40)

3.2.2 Quantization :

After understanding the strings at classical level, the next step is to quantization –

quantize independent degrees of freedomX i(σ, τ) (with canonical momentum density

Πi) in the action:

S = − 1

4πα′

∫
d2σ∂aX i∂aX

i; Πi =
1

2πα′∂τX
i (3.41)

Nominate X i to be a quantum operator, with the canonical commutation relation at

a given time slice:

[
X i(σ, τ), Xj(σ′, τ)

]
=
[
Πi(σ, τ),Πj(σ′, τ)

]
= 0;

[
X i(σ, τ),Πj(σ′, τ)

]
= iδijδ(σ − σ′)

(3.42)

52



3.2.2 Quantization :

The results are 0th mode xi, pi and oscillation modes αi, α̃i all become operators:

[
xi, pj

]
= iδij;

[
αi
n, α

j
m

]
=
[
α̃i
n, α̃

j
m

]
= nδijδn+m,0 (3.43)

Note that αi, α̃i can be related to the creation and annihilation operators :

1√
n
αi
n = ain;

1√
n
αi
−n =

(
ai−n

)†
;

1√
n
α̃i
−n =

(
ãi−n

)†
;

1√
n
α̃i
n = ãin (3.44)

Therefore, the oscillator vacuum state (labelled by string space time momentum pµ)

satisfies :

αi
n |0, pµ⟩ = α̃i

n |0, pµ⟩ = 0, n > 0 (3.45)

Excited states can be built from creation operators (αi
−n, α̃

i
−nwith n > 0) :

αi1
−n1

αi2
−n2

· · · α̃j1
−m1

α̃j2
−m2

· · · |0, pµ⟩ (3.46)

For closed string, define the oscillation number operator (no summation in i index,

and the order of operators is very important):

N i
n =

1

n
αi
−nα

i
n; Ñ i

n =
1

n
α̃i
−nα̃

i
n (3.47)

The quantum version of the mass shell condition for closed strings,

M2 =
2

α′

D−1∑
i=2

∑
n̸=0

n
(
N i

n + Ñ i
n

)
+ a0 (3.48)
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3.2.2 Quantization :

The constant a0 is the zero-point energy for closed string, comes from rearranging

the operator to normal ordered :

a0 =
2(D − 2)

α′

∞∑
n=1

n = −(D − 2)

24

4

α′ (3.49)

Similarly for open string,

M2 =
1

α′

D−1∑
i=2

∞∑
m=1

mN i
m + a0 (3.50)

The constant a0 is found to be :

a0 =
(D − 2)

2α′

∞∑
n=1

n = −(D − 2)

24

1

α′ (3.51)

The string-spectrum can be read-off, as each state of a string corresponds to a

spactime particle state.

Let’s start with the particles content of open strings:

1. The oscillation vacuum state is:

|0, pµ⟩ ; N i
m = 0; ∀m, i (3.52)

The spacetime transformation of this state indicates that it should be a space-

time scalar of mass: M2 = −D−2
24α′ . This particle is a tachyon when D > 2 as

M2 < 0.

2. The oscillation 1st excited state transforms as a SO(D − 2) vector under

spacetime rotation: αi
−1 |0, pµ⟩, M2 = −D−2

24α′ . Since the 1st excited state
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3.2.2 Quantization :

is a vector with only D − 2 independent component, for the consistency of

Lorentz symmetries or the quantization procedure, then it should be massless:

M2 = 0 ⇒ D = 26. This results for spacetime dimension is known as the

critical dimension of (bosonic) string theory. The coherent state created by

many of this particle in spacetime gives the field configuration of a massless

vector field Aµ, later play the roles of a gauge boson (like photon and gluon).

3. Higher excitations are all massive giving by multiplets of mass-squared spacing

1
α′ . For example, the particle description for the 2nd excited string state

(massive): αi
−1α

j
−1 |0, pµ⟩, αi

−2 |0, pµ⟩, M2 = 1
α′

The particles content of closed strings can also be read-off similarly:

1. The oscillation vacuum state is:

|0, pµ⟩ ; N i
m = Ñ i

m = 0; ∀m, i (3.53)

The spacetime transformation of this state indicates that it should be a space-

time scalar of mass: M2 = −D−2
6α′ . Similar to open string, this particle is a

tachyon when D > 2 as M2 < 0.

2. The oscillation 1st excited state is (using the level matching condition): αi
−1α̃

j
−1 |0, pµ⟩,

M2 = 26−D
6α′ . Again, only for D = 26, this state fall into the irreducible repre-

sentations SO(D−2) of Lorentz group consistently (as massless M2 = 0 spin 2

particles) with further decomposition to scalar (trace), symmetric trace-less and

anti-symmetric:
∑24

i αi
−1α̃

i
−1 |0, pµ⟩, αi

−1α̃
j
−1eij |0, pµ⟩, αi

−1α̃
j
−1bij |0, pµ⟩. The

coherent state given from many of these particles in spacetime are the field
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3.2.2 Quantization :

configuration of a massless scalar field Φ (dilaton), a traceless symmetric ten-

sor field Gµν (graviton) and a anti-symmetric tensor field Bµν (Kalb-Ramon,

or B-field), associated with gauge symmetries.

3. Higher excitations are all massive giving by multiplets of mass-squared spacing

4
α′ . For example, the particle description for the 2nd excited string state

(massive): αi
−1α

j
−1α̃

k
−1α̃

l
−1 |0, pµ⟩, αi

−2α̃
k
−1α̃

l
−1 |0, pµ⟩, αi

−1α
j
−1α̃

k
−2 |0, pµ⟩, M2 =

4
α′ . This fits with the description of a massive spin 4 particles in D = 26

Lorentz irreducible group, form a complete multiplets of SO(25). The same

consistency holds for higher spin (mass) particles.

At low energyE ≪ 1
α′ , the dynamics of Aµ and Gµν should be governed by Maxwell

and Einstein theory. This is confirmed by explicit calculations of scattering am-

plitudes of these particles in string theory (gs ≪ 1). Also we get GN ∝ g2s and

gs = e⟨Φ⟩.

There are different quantizations exist (with no tachyon), and IIA and IIB are

the name of perturbative superstring theories of future interests. Both of them re-

quire the critical dimension to be Themasslessclosedsuperstring(bosonic)fieldsinspacetimeare :.

The massless closed superstring (bosonic) fields in spacetime are:

1. For IIA superstring:

Φ, Gµν , Bµν , Aµ, C
(3)
µνλ (3.54)

Aµ and C
(3)
µνλ are the RR fields.

2. For IIB superstring:

Φ, Gµν , Bµν , χ, C(2)
µν , C

(4)
µνλσ (3.55)
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3.3 D-Branes :

χ,C
(2)
µν and C

(4)
µνλσ are the RR fields.

The low energy effective field theories of these superstring theories are IIA and IIB

supergravity.

3.3 D-Branes :

We have two imporatant Boundary condiotions :

1. The Dirichlet condition (D-condition) for the ends of open string (σend = 0, π)

in spatial direction, δX i = 0 → X i(σend, τ) = const.

2. The Neumann condition (N-condition) for the ends of open string (σend = 0, π),

is ∂σδX
µ = 0

Let’s start with the D-condition,

The physical interpretation is that the end point is restricted at a hypersurface

or a p-dimensional surface, a “spacetime defect” where open strings can end, which

seemingly is not a degrees of freedom from perturbative string point of view. Such

object is called a D-brane, and Dp-brane is a D-brane with p spatial direction,
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3.3 D-Branes :

1. Suppose in all directions we have

X0,1,··· ,D−2 = N for σ = 0, π (3.56)

XD−1 = a for σ = 0, π (3.57)

2.
X0,1,··· ,p = N for σ = 0, π (3.58)

Xp+1,p+2,··· ,D−1 = a⃗ for σ = 0, π (3.59)

3. If in all direction the end of open string has N-condition, one can interpret

that this means the open string can end anywhere, which can be thought as

there’s a space-filling brane (D25-brane, as the number of spatial dimensions is

25 in bosonic string theory) and there’s interesting dynamics associated with

that nonperturbative objects. One way to think about it is that strings must

naturally exist as closed strings, and they can only break open at some special

places in spacetime, where D-branes are located.

4. In Lorentzian spacetime, however, there’s no D(-1)-brane (in the sense that it’s

not a stable object, only appears for an instant in time). Because time in the

target space cannot standstill, so the condition X0 = const. doesn’t happen.

5. A D0-brane is a particle; a D1-brane is itself a string; a D2-brane a membrane

and so on.

6. Consider more than one D-branes. Here we get 4-types of open strings.
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3.3 D-Branes :

X0,1,··· ,p = N for σ = 0, π (3.60)

Xp+1,p+2,··· ,D−1 = a⃗ for (σ = 0, τ) (3.61)

= b⃗ for (σ = π, τ) (3.62)

7. D-branes of different dimensions

XD−2 = N for (σ = 0, τ) (3.63)

XD−2 = a1 for (σ = π, τ) (3.64)

A Dp − brane breaks translational and Lorentz symmetries of original MinkD to

Poincare(1, p)× SO(D − 1− p)

What D-brane tells us ?

The D-brane taught us two things. First, the GKP-Witten relation becomes more

precise:

ZN4 = ZAdS5×S5 (3.65)

The left-hand side is the partition function of the N = 4 SYM, and the right-hand

side is the partition function of string theory on AdS5 × S5.

Second, from the D-brane, we are able to obtain the AdS/CFT dictionary. But
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3.3 D-Branes :

one often compactifies S5 and consider the resulting five-dimensional gravitational

theory. The theory obtained in this way is called gauged supergravity.

The actual procedure of the S5 compactification is rather complicated, and the

full gauged supergravity action is complicated as well.
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Chapter 4

The AdS spacetime

So what is Anti-deSitter (AdS) spacetime?

AdSd+1 is a maximally symmetric spacetime with negative curvature. It is a

solution to Einstein’s equations with a negative cosmological constant.

4.1 Spacetimes with constant curvature

Now consider spacetimes with constant curvature. The AdS2 spacetime can be em-

bedded into a flat spacetime with two timelike directions as in figure[ (4.1)]
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4.1 Spacetimes with constant curvature

Figure 4.1: The embedding of AdS2 into R2,1. The timelike direction t̃ is periodic,
so we consider the covering space

ds2 = −dZ2 − dX2 + dY 2 (4.1)

−Z2 −X2 + Y 2 = L2 (4.2)

The parameter L is called the AdS radius. The AdS2 spacetime has the SO(2, 1)

invariance. Just like S2 and H2, take a coordinate system

Z = L cosh ρ cos t̃, X = L cosh ρ sin t̃, Y = L sinh ρ (4.3)

Then, the metric becomes

ds2 = L2(− cosh2 ρdt̃2 + dρ2) (4.4)

This coordinate system (t̃, ρ) is called the global coordinates. Although we embed

the AdS spacetime into a flat spacetime with two timelike directions X and Y, the

AdS spacetime itself has only one timelike direction.

From Eq. (4.3), the coordinate t̃ has the periodicity 2π, so the timelike direction is

periodic. This is problematic causally, so one usually unwraps the timelike dirrection
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4.2 Various coordinate systems of AdS spacetime

and considers the covering space of the AdS2 spacetime, where −∞ < t̃ < ∞. The

AdS spacetime in AdS/CFT is this covering space. The AdS2 spacetime has a

constant negative curvature R = −2/L2.

One often considers the AdS5 spacetime for applications to AdS/CFT, but for the

dS spacetime, one often considers the dS4 spacetime for applications to cosmology.

4.2 Various coordinate systems of AdS spacetime

So far we discussed the AdS spacetime using the global coordinates. But various

other coordinate systems appear in the literature.

Static coordinates : (t̃, r̃) The coordinate r̃ is defined by r̃ = sinh ρ. The

metric becomes
dS2

L2
= −

(
r̃2 + 1

)
dt̃2 +

dr̃2

r̃2 + 1
(4.5)

This coordinate system is useful to compare with the AdS black hole.

Conformal coordinates : (t̃, θ) the coordinate θ is defined by tan θ = sinh ρ(θ :

−π/2 → π/2). The metric becomes flat up to an overfall factor (conformally flat) :

dS2

L2
=

1

cos2 θ

(
−dt̃2 + dθ2

)
(4.6)
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4.2 Various coordinate systems of AdS spacetime

Figure 4.2: The AdS2 spacetime in conformal coordinates. The Poincare coordinates
cover only part of the full AdS spacetime which is shown in the dark shaded region
(Poincare patch).

The AdS spacetime is represented as Fig. [ (4.2)] in this coordinate system. What

is important is the existence of the spatial “boundary” at θ = ±π/2. This boundary

is called the AdS boundary.

Poincare coordinates : (t,r) this coordinate system is defined by

Z =
Lr

2

(
−t2 +

1

r2
+ 1

)
(4.7)

X = Lrt (4.8)

Y =
Lr

2

(
−t2 +

1

r2
− 1

)
(4.9)

(r > 0, t : −∞ → ∞). The metric becomes

dS2

L2
= −r2dt2 +

dr2

r2
(4.10)
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4.3 Maximally symmetric spacetimes :

This is the most often used coordinate system in AdS/CFT. This coordinate system

is also useful to compare with the AdS black hole.

4.3 Maximally symmetric spacetimes :

We saw that these spacetimes have a large number of symmetries like S2. In fact,

they are called maximally symmetric spacetimes which admit the maximum number

of symmetry generators. As a familiar example, the Minkowski spacetime is also a

spacetime with constant curvature (namely R = 0) and is a maximally symmetric

space. The (p + 2)-dimensional Minkowski spacetime has the ISO(1, p+1) Poincare

invariance. The number of symmetry generators is (p + 1)(p + 2)/2 for SO(1, p+1)

and (p + 2) for translations, so (p + 2)(p + 3)/2 in total. This is the maximum

number of generators.
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Chapter 5

The AdS black hole

Black holes can exist in the AdS spacetime. The simplest AdS black hole is known

as the Schwarzschild-AdS black hole (SAdS black hole hereafter). Just like the

Schwarzschild black hole, one can consider AdS black holes with spherical horizon,

but we consider AdS black holes with planar horizon or AdS black branes for the

time being.

The SAdS5 black hole is a solution of the Einstein equation with a negative

cosmological constant like the AdS5 spacetime. The metric is given by

ds25 = −
( r
L

)2
h(r)dt2 +

dr2(
r
L

)2
h(r)

+
( r
L

)2 (
dx2 + dy2 + dz2

)
(5.1)

h(r) = 1−
(r0
r

)4
(5.2)

The horizon is located at r = r0. When r0 = 0, the metric reduces to the AdS5

spacetime in Poincare coordinates. The g00 component contains the factor r40/(L
2r2).
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5.1 Thermodynamic quantities of AdS black hole

The O(r−2) behavior comes from the Newtonian potential which behaves as r−2 in

the five-dimensional spacetime. The coordinates (x, y, z) represent R3 coordinates.

In the Schwarzschild black hole, this part was r2dΩ2 which represents a spherical

horizon, but here the r = r0 horizon extends indefinitely in (x, y, z)-directions. The

AdS spacetime is a spacetime with constant curvature, but the SAdS5 black hole is

not. For example, there is a curvature singularity at r = 0.

5.1 Thermodynamic quantities of AdS black hole

Here, we compute thermodynamic quantities of the SAdS5 black hole. In AdS/CFT,

they are interpreted as thermodynamic quantities of the dual N = 4 SYM at strong

coupling. In order to rewrite black hole results as gauge theory results, one needs

the relation of the parameters between two theories.

N2
c =

π

2

L3

G5

, λ =

(
L

ls

)4

(5.3)

Such relations are known as the AdS/CFT dictionary. On the left-hand side, we

have gauge theory parameters which are written in terms of gravity parameters on

the right-hand side.

First, the temperature is given by

T =
f ′(r0)

4π
(5.4)

=
1

4π

1

L2

(
2r +

2r40
r3

) ∣∣
r=r0

(5.5)

=
1

π

r0
L2

(5.6)

68



5.1 Thermodynamic quantities of AdS black hole

For this black hole, the horizon has an infinite extension, and the entropy itself

diverges, so it is more appropriate to use the entropy density s. Let the spatial

extension of the black hole as 0 ≤ x, y, z ≤ Lx, Ly, Lz. (This is just an infrared cutoff

to avoid divergent expressions.) The gauge theory coordinates are (x, y, z), so the

gauge theory volume is V3 := LxLyLz. This is different from the horizon “area” since

the line element is (r/L)2(dx2 + dy2 + dz2). Then, from the area law

S =
A

4G5

=
1

4G5

(r0
L

)3
V3 (5.7)

⇒ s =
S

V3

=
1

4G5

(r0
L

)3
(5.8)

=
a

4G5

(5.9)

where a = A/V3 is the “horizon area density”. Using the temperature (5.6) and the

AdS/CFT dictionary, one gets

s =
π2

2
N2

c T
3 (5.10)

The rest of thermodynamic quantities can be determined using thermodynamic

relations. The first law dε = Tds can determine the energy density

ε =
3

8
π2N4

c T
3 (5.11)

The Euler relation ε = Ts− P then determines the pressure P = 1
3
ε.
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5.2 AdS Black Holes and Thermality

5.2 AdS Black Holes and Thermality

Let us begin with a thought experiment. Consider a CFT living on the Lorentzian

cylinder R× Sd−1, and let us slowly heat it up. Since the dilatation operator serves

as the Hamiltonian, as we increase the temperature the CFT will be in a state

characterized by larger and larger operator/state dimensions.

Since the AdS Hilbert space is identical to that of the CFT, we can interpret

our hot CFT as a thermal state in AdS. But what will this state consist of? At

low temperatures we will just have a thermal gas made up of the light particles in

AdS. Due to the AdS geometry, these particles will mostly move around near the

center of AdS, with only occasional excursions further away. This means that as we

increase the temperature, we will be cramming more and more energy into a region

of roughly fixed size. In the presence of dynamical gravity, this cannot go on forever

– eventually, at some critical temperature Tc, the hot gas will collapse to form a black

hole in AdS. Our thought experiment shows that black holes in AdS must correspond

to a hot CFT!
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Chapter 6

Properties of AdS Black Holes

6.1 How anti-de Sitter black holes reach thermal

equilibrium

Black holes in anti-de Sitter (AdS) spacetimes have been well studied in recent

decades due to their applications in holography (gauge/gravity duality). These black

holes behave rather differently from their asymptotically flat counterpart. Notably,

their event horizon need not be spherical, topologically speaking. Instead, black holes

with hyperbolic or toroidal horizon are also valid solutions to the Einstein field equa-

tions. Regardless of their horizon topology, AdS black holes possess very different

thermodynamical behavior compared to the asymptotically flat ones. The Hawking

temperature in d-dimensions takes the form (in the units G = c = ℏ = kB = 1)

T =
k(d− 3)L2 + (d− 1)r2h

4πL2rh
, (6.1)
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6.1 How anti-de Sitter black holes reach thermal equilibrium

where k = +1, 0,−1 correspond to horizons that are positively curved, flat, and neg-

atively curved, respectively, and rh denotes the radial location of the event horizon.

For a sufficiently large black hole, namely those with horizon size larger than the

AdS curvature length scale (rh > L), the temperature is directly proportional to rh.

That is to say, large AdS black holes are “hot”1. This lies in stark contrast with

the asymptotically flat Schwarzschild black hole, whose temperature scales inversely

proportional to its mass (and therefore size).

In addition, asymptotically locally AdS spacetimes have a timelike boundary

at spatial infinity. Remarkably, null geodesics from within the bulk can hit the

boundary and be reflected back in a finite affine parameter interval (and also in

a finite coordinate time t, if we use the canonical Schwarzschild-like coordinates).

To see this, let us focus on the k = 0 case, which is widely used in holography.

Hereinafter, we shall refer to such black holes as “flat black holes”.

Suppose there is no black hole. The metric tensor

s.
2 = − r2

L2
t.
2 +

L2

r2
r.
2 + r2

(
d−2∑
i=1

(x.
i)2

)
, (6.2)

simply describes a flat foliation of the maximally symmetric AdS spacetime. This

coordinate system fails at the center r = 0, so let us consider r = ε > 0, where ε is

small. The proper time between any two events both located at r = ε is (ε/L)∆t,

1Even though the temperature of AdS black holes can be arbitrarily high from the viewpoint
of the global geometry, local observers never see thermal radiation at such Hawking temperature.
Keeping this subtlety in mind, we shall no longer put scare quotes around the words hot or cold
hereinafter.
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6.1 How anti-de Sitter black holes reach thermal equilibrium

where ∆t for a photon that goes from r = ε to ∞ and back is

∆t = 2

∫ ∞

ε

L2

r2
r. =

2L2

ε
. (6.3)

This is finite, although large. The proper time elapsed for the static observer is

2L. Note that ε drops out in the proper time, as it should, since the AdS “center”

is arbitrary. As a consequence, if a reflective boundary condition is imposed, the

Hawking photons will be reflected back into the black hole and so a sufficiently large

black hole can attain thermal equilibrium. (Another consequence is the non-linear

instability of AdS: surprisingly a large class of arbitrarily small perturbations can be

reflected and refocused in the bulk, thus causing black hole formation)

For the k = 1 case, small black holes are also hot (T ∼ 1/rh as can be seen

from Eq.(6.1)), much like a small asymptotically flat Schwarzschild black hole. Since

Hawking radiation takes time to hit the boundary and be reflected back, such small

black holes can therefore completely evaporate before they have any hope to achieve

thermal equilibrium. In other words, large black holes (which have positive specific

heat) are stable while small black holes (which have negative specific heat) are there-

fore unstable. We could in principle use this stability criterion to define “large” and

“small”. While this criterion happens to coincide with using either the mass or the

horizon size being greater than L to define the black hole “size” in the k = 1 case, it

does not hold for the k = 0 case that we would like to focus on in this work. These

black holes have Hawking temperature that is proportional to rh regardless of the

black hole size, this means that small flat black holes are cold, i.e., their rate of evap-

oration is slow. Therefore it is not impossible for small black holes to attain thermal

equilibrium with their Hawking radiation. All k = 0 black holes would therefore be
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6.2.1 Introduction

“large” if we were to use the stability/specific heat to define its “size”. This is why

we use rh > L as the definition of a large black hole.

Furthermore, since the boundary condition can be changed to a completely ab-

sorptive one in which there is no thermal equilibrium, we prefer to use a definition

that holds independent of the boundary condition. That is, a large black hole would

remain large even if we change the boundary condition. Given a fixed black hole

in the bulk, it takes time for the radiation to reach the boundary and come back.

Until the radiation reaches the boundary (and potentially reflected back or absorbed

depending on the boundary condition), the black hole has no knowledge of whether

it can reach equilibrium. So a local criteria that allows us to define the black hole

size at any given time, even before the first Hawking radiation is emitted (so that we

can speak of whether an initially “large” black hole can evolve into a “small” one or

remains “large”, even in the k = 1 case) is more useful. As we shall see, defined this

way, large flat black holes can evaporate into a small black hole which is in thermal

equilibrium with their Hawking quanta2.

6.2 Perturbations of anti-de Sitter black holes

6.2.1 Introduction

The perturbations of a black hole are governed by quasi-normal modes (QNMs).

The latter are typically obtained by solving a wave equation for small fluctuations

2Gibbons and Perry argued that black holes can remain in thermal equilibrium with a heat bath
even in the presence of particle interactions, though his work is restricted to the asymptotically flat
case, the conclusion is likely to be generic
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6.2.1 Introduction

in the black hole background subject to the conditions that the flux be ingoing at

the horizon and outgoing at asymptotic infinity.

In this section I discuss scalar, gravitational and electromagnetic perturbations of

an AdS Schwarzschild black hole in d dimensions analytically calculating the QNM

spectrum in the high frequency regime. Low overtones will be discussed in the next

section. The metric of an AdS Schwarzschild black hole is

ds2 = −
(
r2

l2
+K − 2µ

rd−3

)
dt2 +

dr2

r2

l2
+K − 2µ

rd−3

+ r2dΣ2
K,d−2 (6.4)

I shall choose units so that the AdS radius l = 1. The horizon radius and Hawking

temperature are, respectively,

2µ = rd−1
+

(
1 +

K

r2+

)
, TH =

(d− 1)r2+ +K(d− 3)

4πr+
(6.5)

The mass and entropy of the hole are, respectively,

M = (d− 2)(K + r2+)
rd−3
+

16πG
V ol(ΣK,d−2), S =

rd−2
+

4G
V ol(ΣK,d−2) (6.6)

The parameter K determines the curvature of the horizon and the boundary of AdS

space. For K = 0,+1,−1 we have, respectively, a flat (Rd−2), spherical (Sd−2) and

hyperbolic (Hd−2/Γ, topological black hole, where Γ is a discrete group of isometries)

horizon (boundary).

The harmonics on ΣK,d−2 satisfy

(∇2 + k2)T = 0 (6.7)
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6.2.2 Scalar perturbations

For K = 0, k is the momentum; for K = +1, the eigenvalues are quantized,

k2 = l(l + d− 3)− δ (6.8)

whereas for K = -1,

k2 = ξ2 +

(
d− 3

2

)2

+ δ (6.9)

where ξ is discrete for non-trivial Γ. d = 0,1,2 for scalar, vector, or tensor perturba-

tions, respectively.

6.2.2 Scalar perturbations

To find the asymptotic form of QNMs, we need to find an approximation to the wave

equation valid in the high frequency regime. In three dimensions the resulting wave

equation will be an exact equation (hypergeometric equation). In five dimensions, I

shall turn the Heun equation into a hypergeometric equation which will lead to an

analytic expression for the asymptotic form of QNM frequencies in agreement with

numerical results.

AdS5 :

Restricting attention to the case of a large black hole, the massless scalar wave

equation reads

1

r3
∂r(r

5f(r)∂rΦ)−
1

r2f(r)
∂2
tΦ− 1

r2
∇⃗2Φ = 0, f(r) = 1−

r4+
r4

(6.10)
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6.2.2 Scalar perturbations

Writing the solution in the form

Φ = ei(ωt−p⃗·x⃗)Ψ(y), y =
r2

r2+
(6.11)

the radial wave equation becomes

(y2 − 1)(y(y2 − 1)Ψ′)′ +

(
ω2

4
y2 − p2

4
(y2 − 1)

)
Ψ = 0 (6.12)

For QNMs, we are interested in the analytic solution which vanishes at the boundary

and behaves as an ingoing wave at the horizon. The wave equation contains an

additional (unphysical) singularity at y = -1, at which the wavefunction behaves as

Ψ ∼ (y + 1)±ω/4. Isolating the behavior of the wavefunction near the singularities

y = ±1,

Ψ(y) = (y − 1)−iω/4(y + 1)±ω/4F±(y) (6.13)

F±(y) satisfies the Heun equation

y(y2−1)F ′′
±+

[(
3− i± 1

2
ω

)
y2 − i± 1

2
ωy − 1

]
F ′
±+

[
ω

2

(
±iω

4
∓ 1− i

)
y − (i∓ 1)

ω

4
− p2

4

]
F± = 0

(6.14)

to be solved in a region in the complex y-plane containing |y| ≥ 1 which includes

the physical regime r > r+. For large ω , the constant terms in the polynomial

coefficients of F ′ and F are small compared with the other terms, therefore they may

be dropped. The wave equation may then be approximated by a hypergeometric

equation

(y2 − 1)F ′′
± +

[(
3− i± 1

2
ω

)
y − i± 1

2
ω

]
F ′
± +

ω

2

(
±iω

4
∓ 1− i

)
F± = 0 (6.15)

77



6.2.3 Gravitational perturbations

in the asymptotic limit of large frequencies ω. The acceptable solution is

F0(x) = F1(a+; a−; c; (y + 1)/2), a± = 1− i± 1

4
ω ± 1, c =

3

2
± ω

2
(6.16)

For proper behavior at the boundary (y → ∞), we demand that F be a polynomial,

which leads to the condition a+ = −n, n = 1, 2, . . . Indeed, it implies that F is a

polynomial of order n, so as y → ∞, F ∼ yn ∼ y−a+ and Ψ ∼ y−iω/4y±ω/4y−a+ ∼ y−2,

as expected.

We deduce the quasi-normal frequencies

ω̂ =
ω

4πTH

= 2n(±1− i) (6.17)

6.2.3 Gravitational perturbations

Next I consider gravitational perturbations. For definiteness, I concentrate on the

case of spherical black holes (K = +1). I shall derive analytic expressions for QNMs

including first-order corrections. The results are in good agreement with results of

numerical analysis. Extension to other forms of the horizon is straightforward. The

radial wave equation for gravitational perturbations in the black-hole background

can be cast into a Schrodinger-like form,

−d2Ψ

dr2∗
+ V [r(r∗)]Ψ = ω2Ψ (6.18)

in terms of the tortoise coordinate defined by dr∗
dr

= 1
f(r)

The potential V for the

various types of perturbation has been found by Ishibashi and Kodama. For tensor,
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6.2.3 Gravitational perturbations

vector and scalar perturbations, one obtains, respectively

VT (r) = f(r)
[ l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

(d− 2)f ′(r)

2r

]
(6.19)

Vv(r) = f(r)
[ l(l + d− 3)

r2
+

(d− 2)(d− 4)f(r)

4r2
+

rf ′′′(r)

2(d− 3)

]
(6.20)

Vs(r) =
f(r)

4r2

[
l(l + d− 3)− (d− 2) +

(d− 1)(d− 2)µ

rd−3

]−2

×
{
d(d− 1)2(d− 2)3µ2

R2r2d−8
− 6(d− 1)(d− 2)2(d− 4)[l(l + d− 3)− (d− 2)]µ

R2rd−5

+
(d− 4)(d− 6)[l(l + d− 3)− (d− 2)]2r2

R2
+

2(d− 1)2(d− 2)4µ3

r3d−9

+
4(d− 1)(d− 2)(2d2 − 11d+ 18)[l(l + d− 3)− (d− 2)]µ2

r2d−6

+
(d− 1)2(d− 2)2(d− 4)(d− 6)µ2

r2d−6
− 6(d− 2)(d− 6)[l(l + d− 3)− (d− 2)2]µ

rd−3

− 6(d− 1)(d− 2)2(d− 4)[l(l + d− 3)− (d− 2)]µ

rd−3

+ 4[l(l + d− 3)− (d− 2)]3 + d(d− 2)[l(l + d− 3)− (d− 2)]2
}

(6.21)

Near the black hole singularity (r ∼ 0),

VT = − 1

4r2∗
+

AT

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ + . . . , AT =

(d− 3)2

2(2d− 5)
+
ℓ(ℓ+ d− 3)

d− 2
, (6.22)

VV =
3

4r2∗
+

AV

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ +. . . , AV =

d2 − 8d+ 13

2(2d− 15)
+
ℓ(ℓ+ d− 3)

d− 2
(6.23)

and

VS = − 1

4r2∗
+

AS

[−2(d− 2)µ]
1

d−2

r
− d−1

d−2
∗ + . . . , (6.24)
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6.2.3 Gravitational perturbations

where

AS =
(2d3 − 24d2 + 94d− 116)

4(2d− 5)(d− 2)
+

(d2 − 7d+ 14)[ℓ(ℓ+ d− 3)− (d− 2)]

(d− 1)(d− 2)2
(6.25)

I have included only the terms which contribute to the order I am interested in. The

behavior of the potential near the origin may be summarized by

V =
j2 − 1

4r2∗
+A r

− d−1
d−2

∗ + . . . (6.26)

where j = 0 (2) for scalar and tensor (vector) perturbations.

On the other hand, near the boundary (large r),

V =
j2∞ − 1

4(r∗ − r̄∗)2
+ . . . , r̄∗ =

∫ ∞

0

dr

f(r)
(6.27)

where j∞ = d − 1, d − 3 and d − 5 for tensor, vector and scalar perturbations,

respectively.

After rescaling the tortoise coordinate (z = ωr∗), the wave equation to first order

becomes (
H0 + ω− d−3

d−2 H1

)
Ψ = 0, (6.28)

where

H0 =
d2

dz2
−
[
j2 − 1

4z2
− 1

]
, H1 = −A z−

d−1
d−2 . (6.29)

By treating H1 as a perturbation, one may expand the wave function

Ψ(z) = Ψ0(z) + ω− d−3
d−2 Ψ1(z) + . . . (6.30)
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6.2.3 Gravitational perturbations

and solve the wave equation perturbatively.

The zeroth-order wave equation,

H0Ψ0(z) = 0, (6.31)

may be solved in terms of Bessel functions,

Ψ0(z) = A1

√
z J j

2
(z) + A2

√
z N j

2
(z). (6.32)

For large z, it behaves as

Ψ0(z) ∼
√

2

π
[A1 cos(z − α+) + A2 sin(z − α+)]

=
1√
2π

(A1 − iA2)e
−iα+eiz +

1√
2π

(A1 + iA2)e
+iα+e−iz

where α± = π
4
(1± j).

At the boundary (r → ∞), the wavefunction ought to vanish, therefore the

acceptable solution is

Ψ0(r∗) = B
√

ω(r∗ − r̄∗) J j∞
2
(ω(r∗ − r̄∗)) (6.33)

Indeed, Ψ → 0 as r∗ → r̄∗, as desired. Asymptotically (large z), it behaves as

Ψ(r∗) ∼
√

2

π
B cos [ω(r∗ − r̄∗) + β] , β =

π

4
(1 + j∞) (6.34)

This ought to be matched to the asymptotic form of the wavefunction in the vicinity

of the black-hole singularity along the Stokes line ℑz = ℑ(ωr∗) = 0. This leads to a
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6.2.3 Gravitational perturbations

constraint on the coefficients A1, A2,

A1 tan(ωr̄∗ − β − α+)− A2 = 0. (6.35)

By imposing the boundary condition at the horizon

Ψ(z) ∼ eiz , z → −∞ , (6.36)

one obtains a second constraint. To find it, one needs to analytically continue the

wavefunction near the black hole singularity (z = 0) to negative values of z. A

rotation of z by −π corresponds to a rotation by − π
d−2

near the origin in the complex

r-plane. Using the known behavior of Bessel functions

Jν(e
−iπz) = e−iπνJν(z) , Nν(e

−iπz) = eiπνNν(z)− 2i cos πν Jν(z) (6.37)

for z < 0 the wavefunction changes to

Ψ0(z) = e−iπ(j+1)/2
√
−z

{[
A1 − i(1 + eiπj)A2

]
J j

2
(−z) + A2e

iπj N j
2
(−z)

}
(6.38)

whose asymptotic behavior is given by

Ψ ∼ e−iπ(j+1)/2

√
2π

[
A1 − i(1 + 2ejπi)A2

]
e−iz +

e−iπ(j+1)/2

√
2π

[A1 − iA2] e
iz (6.39)

Therefore one obtains a second constraint

A1 − i(1 + 2ejπi)A2 = 0 . (6.40)
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6.2.3 Gravitational perturbations

The two constraints are compatible provided∣∣∣∣∣∣ 1 −i(1 + 2ejπi)

tan(ωr̄∗ − β − α+) −1

∣∣∣∣∣∣ = 0 (6.41)

which yields the quasi-normal frequencies

ωr̄∗ =
π

4
(2 + j + j∞)− tan−1 i

1 + 2ejπi
+ nπ (6.42)

The first-order correction to the above asymptotic expression may be found by

standard perturbation theory. To first order, the wave equation becomes

H0Ψ1 +H1Ψ0 = 0 (6.43)

The solution is

Ψ1(z) =
√
z N j

2
(z)

∫ z

0

dz′

√
z′ J j

2
(z′)H1Ψ0(z

′)

W
−
√
z J j

2
(z)

∫ z

0

dz′

√
z′N j

2
(z′)H1Ψ0(z

′)

W
(6.44)

where W = 2/π is the Wronskian.

The wavefunction to first order reads

Ψ(z) = {A1[1− b(z)]− A2a2(z)}
√
zJ j

2
(z) + {A2[1 + b(z)] + A1a1(z)}

√
zN j

2
(z)

(6.45)
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6.2.3 Gravitational perturbations

where

a1(z) =
πA
2

ω− d−3
d−2

∫ z

0

dz′ z′
− 1

d−2J j
2
(z′)J j

2
(z′)

a2(z) =
πA
2

ω− d−3
d−2

∫ z

0

dz′ z′
− 1

d−2N j
2
(z′)N j

2
(z′)

b(z) =
πA
2

ω− d−3
d−2

∫ z

0

dz′ z′
− 1

d−2J j
2
(z′)N j

2
(z′)

and A depends on the type of perturbation.

Asymptotically, it behaves as

Ψ(z) ∼
√

2

π
[A′

1 cos(z − α+) + A′
2 sin(z − α+)] , (6.46)

where

A′
1 = [1− b̄]A1 − ā2A2 , A′

2 = [1 + b̄]A2 + ā1A1 (6.47)

and I introduced the notation

ā1 = a1(∞) , ā2 = a2(∞) , b̄ = b(∞) . (6.48)

The first constraint is modified to

A′
1 tan(ωr̄∗ − β − α+)− A′

2 = 0 (6.49)

Explicitly,

[(1− b̄) tan(ωr̄∗ − β − α+)− ā1]A1 − [1 + b̄+ ā2 tan(ωr̄∗ − β − α+)]A2 = 0 (6.50)
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6.2.3 Gravitational perturbations

To find the second constraint to first order, one needs to approach the horizon. This

entails a rotation by −π in the z-plane. Using

a1(e
−iπz) = e−iπ d−3

d−2 e−iπja1(z) ,

a2(e
−iπz) = e−iπ d−3

d−2

[
eiπja2(z)− 4 cos2

πj

2
a1(z)− 2i(1 + eiπj)b(z)

]
,

b(e−iπz) = e−iπ d−3
d−2

[
b(z)− i(1 + e−iπj)a1(z)

]
in the limit z → −∞ one obtains

Ψ(z) ∼ −ie−ijπ/2B1 cos(−z − α+)− ieijπ/2B2 sin(−z − α+) (6.51)

where

B1 = A1 − A1e
−iπ d−3

d−2 [b̄− i(1 + e−iπj)ā1]

−A2e
−iπ d−3

d−2

[
e+iπj ā2 − 4 cos2

πj

2
ā1 − 2i(1 + e+iπj)b̄

]
−i(1 + eiπj)

[
A2 + A2e

−iπ d−3
d−2 [b̄− i(1 + e−iπj)ā1] + A1e

−iπ d−3
d−2 e−iπj ā1

]
B2 = A2 + A2e

−iπ d−3
d−2 [b̄− i(1 + e−iπj)ā1] + A1e

−iπ d−3
d−2 e−iπj ā1

Therefore the second constraint to first order reads

[1−e−iπ d−3
d−2 (iā1+b̄)]A1−[i(1+2eiπj)+e−iπ d−3

d−2 ((1+eiπj)ā1+eiπj ā2−ib̄)]A2 = 0 (6.52)
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6.2.4 Electromagnetic perturbations

Compatibility of the two first-order constraints yields∣∣∣∣∣∣ 1 + b̄+ ā2 tan(ωr̄∗ − β − α+) i(1 + 2eiπj) + e−iπ d−3
d−2 ((1 + eiπj)ā1 + eiπj ā2 − ib̄)

(1− b̄) tan(ωr̄∗ − β − α+)− ā1 1− e−iπ d−3
d−2 (iā1 + b̄)

∣∣∣∣∣∣ = 0

(6.53)

leading to the first-order expression for quasi-normal frequencies,

ωr̄∗ =
π

4
(2 + j + j∞) +

1

2i
ln 2 + nπ

−1

8

{
6ib̄− 2ie−iπ d−3

d−2 b̄− 9ā1 + e−iπ d−3
d−2 ā1 + ā2 − e−iπ d−3

d−2 ā2

}
where

ā1 =
πA
4

(
nπ

2r̄∗

)− d−3
d−2 Γ( 1

d−2
)Γ( j

2
+ d−3

2(d−2)
)

Γ2( d−1
2(d−2)

)Γ( j
2
+ d−1

2(d−2)
)

ā2 =

[
1 + 2 cot

π(d− 3)

2(d− 2)
cot

π

2

(
−j +

d− 3

d− 2

)]
ā1

b̄ = − cot
π(d− 3)

2(d− 2)
ā1

Thus the first-order correction is ∼ O(n− d−3
d−2 ).

The above analytic results are in good agreement with numerical results for a

detailed comparison).

6.2.4 Electromagnetic perturbations

The electromagnetic potential in four dimensions is

VEM =
ℓ(ℓ+ 1)

r2
f(r). (6.54)
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6.2.5 Vector perturbations

Near the origin,

VEM =
j2 − 1

4r2∗
+

ℓ(ℓ+ 1)r
−3/2
∗

2
√
−4µ

+ . . . , (6.55)

where j = 1. Therefore a vanishing potential to zeroth order is obtained. To calculate

the QNM spectrum one needs to include first-order corrections from the outset.

Working as with gravitational perturbations, one obtains the QNMs

ωr̄∗ = nπ − i

4
lnn+

1

2i
ln
(
2(1 + i)A

√
r̄∗
)
, A =

ℓ(ℓ+ 1)

2
√
−4µ

(6.56)

Notice that the first-order correction behaves as lnn, a fact which may be associated

with gauge invariance.

As with gravitational perturbations, the above analytic results are in good agree-

ment with numerical results for a detailed comparison).

6.2.5 Vector perturbations

I start with vector perturbations and work in the d-dimensional Schwarzschild back-

ground with K = +1 (spherical horizon and boundary). It is convenient to introduce

the coordinate

u =
(r+
r

)d−3

(6.57)

The wave equation becomes

−(d− 3)2u
d−4
d−3 f̂(u)

(
u

d−4
d−3 f̂(u)Ψ′

)′
+ V̂V(u)Ψ = ω̂2Ψ , ω̂ =

ω

r+
(6.58)
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6.2.5 Vector perturbations

where prime denotes differentiation with respect to u and I have defined

f̂(u) ≡ f(r)

r2
= 1− u

2
d−3

(
u− 1− u

r2+

)
(6.59)

V̂V(u) ≡
VV

r2+
= f̂(u)

L̂2 +
(d− 2)(d− 4)

4
u− 2

d−3 f̂(u)−
(d− 1)(d− 2)

(
1 + 1

r2+

)
2

u


(6.60)

where L̂2 = ℓ(ℓ+d−3)

r2+
.

First I consider the large black hole limit r+ → ∞ keeping ω̂ and L̂ fixed (small).

Factoring out the behavior at the horizon (u = 1)

Ψ = (1− u)−i ω̂
d−1F (u) (6.61)

the wave equation simplifies to

AF ′′ + Bω̂F
′ + Cω̂,L̂F = 0 (6.62)
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6.2.5 Vector perturbations

where

A = −(d− 3)2u
2d−8
d−3 (1− u

d−1
d−3 )

Bω̂ = −(d− 3)[d− 4− (2d− 5)u
d−1
d−3 ]u

d−5
d−3 − 2(d− 3)2

iω̂

d− 1

u
2d−8
d−3 (1− u

d−1
d−3 )

1− u

Cω̂,L̂ = L̂2 +
(d− 2)[d− 4− 3(d− 2)u

d−1
d−3 ]

4
u− 2

d−3

− ω̂2

1− u
d−1
d−3

+ (d− 3)2
ω̂2

(d− 1)2
u

2d−8
d−3 (1− u

d−1
d−3 )

(1− u)2

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1
d−3 ]u

d−5
d−3

1− u
− (d− 3)2

iω̂

d− 1

u
2d−8
d−3 (1− u

d−1
d−3 )

(1− u)2

One may solve this equation perturbatively by separating

(H0 +H1)F = 0 (6.63)

where

H0F ≡ AF ′′ + B0F
′ + C0,0F

H1F ≡ (Bω̂ − B0)F
′ + (Cω̂,L̂ − C0,0)F

Expanding the wavefunction perturbatively,

F = F0 + F1 + . . . (6.64)

at zeroth order the wave equation reads

H0F0 = 0 (6.65)
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6.2.5 Vector perturbations

whose acceptable solution is

F0 = u
d−2

2(d−3) (6.66)

being regular at both the horizon (u = 1) and the boundary (u = 0, or Ψ ∼ r−
d−2
2 →

0 as r → ∞). The Wronskian is

W =
1

u
d−4
d−3 (1− u

d−1
d−3 )

(6.67)

and another linearly independent solution is

F̌0 = F0

∫
W
F 2
0

(6.68)

which is unacceptable because it diverges at both the horizon (F̌0 ∼ ln(1 − u) for

u ≈ 1) and the boundary (F̌0 ∼ u− d−4
2(d−3) for u ≈ 0, or Ψ ∼ r

d−4
2 → ∞ as r → ∞).

At first order the wave equation reads

H0F1 = −H1F0 (6.69)

whose solution may be written as

F1 = F0

∫
W
F 2
0

∫
F0H1F0

AW
(6.70)

The limits of the inner integral may be adjusted at will because this amounts to

adding an arbitrary amount of the unacceptable solution. To ensure regularity at

the horizon, choose one of the limits of integration at u = 1 rendering the integrand
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6.2.5 Vector perturbations

regular at the horizon. Then at the boundary (u = 0),

F1 = F̌0

∫ 1

0

F0H1F0

AW
+ regular terms (6.71)

The coefficient of the singularity ought to vanish,

∫ 1

0

F0H1F0

AW
= 0 (6.72)

which yields a constraint on the parameters (dispersion relation)

a0L̂
2 − ia1ω̂ − a2ω̂

2 = 0 (6.73)

After some algebra, one arrives at

a0 =
d− 3

d− 1
, a1 = d− 3 (6.74)

The coefficient a2 may also be found explicitly for each dimension d, but it cannot

be written as a function of d in closed form. It does not contribute to the dispersion

relation at lowest order. E.g., for d = 4, 5, one obtains, respectively

a2 =
65

108
− 1

3
ln 3 ,

5

6
− 1

2
ln 2 (6.75)

Eq. (6.73) is quadratic in ω̂ and has two solutions,

ω̂0 ≈ −i
L̂2

d− 1
, ω̂1 ≈ −i

d− 3

a2

+ i
L̂2

d− 1
(6.76)
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6.2.5 Vector perturbations

In terms of the frequency ω and the quantum number ℓ,

ω0 ≈ −i
ℓ(ℓ+ d− 3)

(d− 1)r+
,

ω1

r+
≈ −i

d− 3

a2

+ i
ℓ(ℓ+ d− 3)

(d− 1)r2+
(6.77)

The smaller of the two, ω0, is inversely proportional to the radius of the horizon and is

not included in the asymptotic spectrum. The other solution, ω1, is a crude estimate

of the first overtone in the asymptotic spectrum, nevertheless it shares two important

features with the asymptotic spectrum: it is proportional to r+ and its dependence

on ℓ is O(1/r2+). The approximation may be improved by including higher-order

terms. This increases the degree of the polynomial in the dispersion relation (6.73)

whose roots then yield approximate values of more QNMs. This method reproduces

the asymptotic spectrum derived earlier albeit not in an efficient way.

To include finite size effects, I shall use perturbation theory (assuming 1/r+ is

small) and replace H1 by

H′
1 = H1 +

1

r2+
H+ (6.78)

where

H+F ≡ A+F
′′ + B+F

′ + C+F (6.79)

The coefficients may be easily deduced by collecting O(1/r2+) terms in the exact wave

equation. One obtains

A+ = −2(d− 3)2u2(1− u)

B+ = −(d− 3)u

[
(d− 3)(2− 3u)− (d− 1)

1− u

1− u
d−1
d−3

u
d−1
d−3

]
C+ =

d− 2

2

[
d− 4− (2d− 5)u− (d− 1)

1− u

1− u
d−1
d−3

u
d−1
d−3

]
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6.2.5 Vector perturbations

Interestingly, the zeroth order wavefunction F0 is an eigenfunction of H+,

H+F0 = −(d− 2)F0 (6.80)

therefore the first-order finite-size effect is a simple shift of the angular momentum

operator

L̂2 → L̂2 − d− 2

r2+
(6.81)

The QNMs of lowest frequency are modified to

ω0 = −i
ℓ(ℓ+ d− 3)− (d− 2)

(d− 1)r+
+O(1/r2+) (6.82)

For d = 4, 5, we have respectively,

ω0 = −i
(ℓ− 1)(ℓ+ 2)

3r+
, −i

(ℓ+ 1)2 − 4

4r+
(6.83)

in agreement with numerical results.

One deduces from (6.82) the maximum lifetime of the vector modes,

τmax =
4π

d
TH (6.84)

In the case of a flat horizon (K = 0),

ω0 = −i
k2

(d− 1)r+
(6.85)
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6.2.6 Scalar perturbations

which leads to the diffusion constant

D =
1

4πTH

(6.86)

In the case of a hyperbolic horizon (K = −1), a similar calculation yields

ω0 = −i
ξ2 + (d−1)2

4

(d− 1)r+
, τ =

1

|ω0|
<

16π

(d− 1)2
TH (6.87)

It follows that for d = 5, these modes live longer than their spherical counterparts

which is important for plasma behavior.

6.2.6 Scalar perturbations

Next I consider scalar perturbations which are calculationally more involved but

phenomenologically more important because their spectrum contains the lowest fre-

quencies and therefore the longest living modes. For a scalar perturbation we ought
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6.2.6 Scalar perturbations

to replace the potential V̂V by

V̂S(u) =
f̂(u)

4

[
m̂+

(
1 +

1

r2+

)
u

]−2

×

{
d(d− 2)

(
1 +

1

r2+

)2

u
2d−8
d−3 − 6(d− 2)(d− 4)m̂

(
1 +

1

r2+

)
u

d−5
d−3

+(d− 4)(d− 6)m̂2u− 2
d−3 + (d− 2)2

(
1 +

1

r2+

)3

u3

+2(2d2 − 11d+ 18)m̂

(
1 +

1

r2+

)2

u2

+
(d− 4)(d− 6)

(
1 + 1

r2+

)2
r2+

u2 − 3(d− 2)(d− 6)m̂2

(
1 +

1

r2+

)
u

−
6(d− 2)(d− 4)m̂

(
1 + 1

r2+

)
r2+

u+ 2(d− 1)(d− 2)m̂3 + d(d− 2)
m̂2

r2+

}
(6.88)

where m̂ = 2 ℓ(ℓ+d−3)−(d−2)

(d−1)(d−2)r2+
= 2(ℓ+d−2)(ℓ−1)

(d−1)(d−2)r2+
.

In the large black hole limit r+ → ∞ with m̂ fixed (small), the potential simplifies

to

V̂
(0)
S (u) =

1− u
d−1
d−3

4(m̂+ u)2

{
d(d− 2)u

2d−8
d−3 − 6(d− 2)(d− 4)m̂u

d−5
d−3

+(d− 4)(d− 6)m̂2u− 2
d−3 + (d− 2)2u3

+2(2d2 − 11d+ 18)m̂u2 − 3(d− 2)(d− 6)m̂2u+ 2(d− 1)(d− 2)m̂3

}
(6.89)

The wave equation has an additional singularity due to the double pole of the scalar
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6.2.6 Scalar perturbations

potential at u = −m̂. It is desirable to factor out the behavior not only at the

horizon, but also at the boundary and the pole of the scalar potential,

Ψ = (1− u)−i ω̂
d−1

u
d−4

2(d−3)

m̂+ u
F (u) (6.90)

Then the wave equation reads

AF ′′ + Bω̂F
′ + Cω̂F = 0 (6.91)

where

A = −(d− 3)2u
2d−8
d−3 (1− u

d−1
d−3 )

Bω̂ = −(d− 3)u
2d−8
d−3 (1− u

d−1
d−3 )

[
d− 4

u
− 2(d− 3)

m̂+ u

]
−(d− 3)[d− 4− (2d− 5)u

d−1
d−3 ]u

d−5
d−3 − 2(d− 3)2

iω̂

d− 1

u
2d−8
d−3 (1− u

d−1
d−3 )

1− u

Cω̂ = −u
2d−8
d−3 (1− u

d−1
d−3 )

[
−(d− 2)(d− 4)

4u2
− (d− 3)(d− 4)

u(m̂+ u)
+

2(d− 3)2

(m̂+ u)2

]
−

[{
d− 4− (2d− 5)u

d−1
d−3

}
u

d−5
d−3 + 2(d− 3)

iω̂

d− 1

u
2d−8
d−3 (1− u

d−1
d−3 )

1− u

][
d− 4

2u
− d− 3

m̂+ u

]

−(d− 3)
iω̂

d− 1

[d− 4− (2d− 5)u
d−1
d−3 ]u

d−5
d−3

1− u
− (d− 3)2

iω̂

d− 1

u
2d−8
d−3 (1− u

d−1
d−3 )

(1− u)2

+
V̂

(0)
S (u)− ω̂2

1− u
d−1
d−3

+ (d− 3)2
ω̂2

(d− 1)2
u

2d−8
d−3 (1− u

d−1
d−3 )

(1− u)2

I shall define the zeroth-order wave equation as H0F0 = 0, where

H0F ≡ AF ′′ + B0F
′ (6.92)
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6.2.6 Scalar perturbations

The acceptable zeroth-order solution is

F0(u) = 1 (6.93)

which is plainly regular at all singular points (u = 0, 1,−m̂). It corresponds to a

wavefunction vanishing at the boundary (Ψ ∼ r−
d−4
2 as r → ∞).

The Wronskian is

W =
(m̂+ u)2

u
2d−8
d−3 (1− u

d−1
d−3 )

(6.94)

and an unacceptable solution is F̌0 =
∫
W . It can be written in terms of hyperge-

ometric functions. For d ≥ 6, it has a singularity at the boundary, F̌0 ∼ u− d−5
d−3 for

u ≈ 0, or Ψ ∼ r
d−6
2 → ∞ as r → ∞. For d = 5, the acceptable wavefunction behaves

as r−1/2 whereas the unacceptable one behaves as r−1/2 ln r. For d = 4, the roles of

F0 and F̌0 are reversed, however the results still valid because the correct boundary

condition at the boundary is a Robin boundary condition. Finally, note that F̌0 is

also singular (logarithmically) at the horizon (u = 1).

Working as in the case of vector modes, one arrives at the first-order constraint

∫ 1

0

Cω̂
AW

= 0 (6.95)

because H1F0 ≡ (Bω̂ − B0)F
′
0 + Cω̂F0 = Cω̂. This leads to the dispersion relation

a0 − a1iω̂ − a2ω̂
2 = 0 (6.96)
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6.2.6 Scalar perturbations

After some algebra, one obtains

a0 =
d− 1

2

1 + (d− 2)m̂

(1 + m̂)2
, a1 =

d− 3

(1 + m̂)2
, a2 =

1

m̂
{1 +O(m̂)} (6.97)

For small m̂, the quadratic equation has solutions

ω̂±
0 ≈ −i

d− 3

2
m̂±

√
d− 1

2
m̂ (6.98)

related to each other by ω̂+
0 = −ω̂−∗

0 , which is a general symmetry of the spectrum.

Finite size effects at first order amount to a shift of the coefficient a0 in the

dispersion relation

a0 → a0 +
1

r2+
a+ (6.99)

After some tedious but straightforward algebra, we obtain

a+ =
1

m̂
{1 +O(m̂)} (6.100)

The modified dispersion relation yields the modes

ω̂±
0 ≈ −i

d− 3

2
m̂±

√
d− 1

2
m̂+ 1 (6.101)

In terms of the quantum number ℓ,

ω±
0 ≈ −i(d− 3)

ℓ(ℓ+ d− 3)− (d− 2)

(d− 1)(d− 2)r+
±
√

ℓ(ℓ+ d− 3)

d− 2
(6.102)

in agreement with numerical results.

Notice that the imaginary part is inversely proportional to r+, as in vector case.
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6.2.6 Scalar perturbations

In the scalar case, we also obtained a finite real part independent of r+.

The maximum lifetime of a gravitational scalar mode is found from (6.102) to be

τmax =
d− 2

(d− 3)d
4πTH (6.103)

In the case of a flat horizon (K = 0), one obtains

ω = ± k√
d− 2

− i
d− 3

(d− 1)(d− 2)r+
k2 (6.104)

showing that the speed of sound is

v =
1√
d− 2

(6.105)

as expected for a CFT and the diffusion constant is

D =
d− 3

d− 2

1

4πTH

(6.106)

For a hyperbolic horizon (K = −1), a similar calculation yields

ω = ±

√
ξ2 + (d−3

2
)2

d− 2
− i

(d− 3)[ξ2 + (d−1)2

4
]

(d− 1)(d− 2)r+
, τ <

4(d− 2)

(d− 3)(d− 1)2
4πTH (6.107)

In the physically relevant case d = 5, evidently the K = −1 scalar modes live longer

than any other modes, which is important for plasma behavior.
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Chapter 7

Future Research Endeavours

In the ever-evolving landscape of theoretical physics, as we gaze towards the fu-

ture, the horizon is adorned with intriguing possibilities and avenues for exploration.

My forthcoming plans encompass a multifaceted approach, featuring the following

interrelated objectives:

1. Large N Expansion in String Theory: Investigating the implications and

applications of the large N expansion in the context of string theory, unraveling

its potential to provide insights into the nature of the universe.

2. Correlation Functions in Finite-Temperature Field Theory: Calcu-

lating correlation functions for finite-temperature field theories to understand

their thermal properties and uncover potential phase transitions.

3. Gauge/Gravity Correspondence: This remarkable duality provides a bridge

between gravity theories in higher-dimensional space-times and conformal field

theories in lower dimensions.
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7 Future Research Endeavours

4. In future, I would like to study stability of different black holes and perturba-

tions of Quasi Normal Modes.

5. Quantum Gravity : The field of quantum gravity is dynamic and continually

evolving, offering a rich landscape for future research. As our understanding of

the fundamental nature of spacetime and gravity progresses, several promising

avenues emerge for further exploration. The following areas represent poten-

tial future research endeavors within the realm of quantum gravity: Quantum

Gravity Phenomenology, Cosmological Consequences, Black Hole Information

Paradox, Quantum Gravity and Particle Physics, Experimental and Observa-

tional Tests.

These future research endeavors represent exciting opportunities to push the bound-

aries of our current knowledge and pave the way for a deeper understanding of the

quantum nature of gravity.
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